首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 148 毫秒
1.
This paper presents an eight‐node nonlinear solid‐shell element for static problems. The main goal of this work is to develop a solid‐shell formulation with improved membrane response compared with the previous solid‐shell element (MOS2013), presented in 1 . Assumed natural strain concept is implemented to account for the transverse shear and thickness strains to circumvent the curvature thickness and transverse shear locking problems. The enhanced assumed strain approach based on the Hu–Washizu variational principle with six enhanced assumed strain degrees of freedom is applied. Five extra degrees of freedom are applied on the in‐plane strains to improve the membrane response and one on the thickness strain to alleviate the volumetric and Poisson's thickness locking problems. The ensuing element performs well in both in‐plane and out‐of‐plane responses, besides the simplicity of implementation. The element formulation yields exact solutions for both the membrane and bending patch tests. The formulation is extended to the geometrically nonlinear regime using the corotational approach, explained in 2 . Numerical results from benchmarks show the robustness of the formulation in geometrically linear and nonlinear problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, a novel reduced integration eight‐node solid‐shell finite element formulation with hourglass stabilization is proposed. The enhanced assumed strain method is adopted to eliminate the well‐known volumetric and Poisson thickness locking phenomena with only one internal variable required. In order to alleviate the transverse shear and trapezoidal locking and correct rank deficiency simultaneously, the assumed natural strain method is implemented in conjunction with the Taylor expansion of the inverse Jacobian matrix. The projection of the hourglass strain‐displacement matrix and reconstruction of its transverse shear components are further employed to avoid excessive hourglass stiffness. The proposed solid‐shell element formulation successfully passes both the membrane and bending patch tests. Several typical examples are presented to demonstrate the excellent performance and extensive applicability of the proposed element. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The degenerated approach for shell elements of Ahmad and co‐workers is revisited in this paper. To avoid transverse shear locking effects in four‐node bilinear elements, an alternative formulation based on the enhanced assumed strain (EAS) method of Simo and Rifai is proposed directed towards the transverse shear terms of the strain field. In the first part of the work the analysis of the null transverse shear strain subspace for the degenerated element and also for the selective reduced integration (SRI) and assumed natural strain (ANS) formulations is carried out. Locking effects are then justified by the inability of the null transverse shear strain subspace, implicitly defined by a given finite element, to properly reproduce the required displacement patterns. Illustrating the proposed approach, a remarkably simple single‐element test is described where ANS formulation fails to converge to the correct results, being characterized by the same performance as the degenerated shell element. The adequate enhancement of the null transverse shear strain subspace is provided by the EAS method, enforcing Kirchhoff hypothesis for low thickness values and leading to a framework for the development of shear‐locking‐free shell elements. Numerical linear elastic tests show improved results obtained with the proposed formulation. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

4.
A new mixed shell element is developed for a seven‐parameter formulation in this paper. The mixed shell element is constructed by assuming stress field and displacement field together. Assumed stress field and assumed displacement field can be combined by stress–strain relationship with Hu‐Washizu functional. The developed mixed shell element can provide more flexible stiffness than other commercial softwares. Additionally, seven‐parameter shell formulation is used instead of Reissner/Mindlin formulation, since it can provide the thickness change. Even though some commercial engineering software are not proper for very thick shell structure, the developed mixed shell element for seven‐parameter formulation can be used without distinction of thick shell and thin shell. An example of shell models with different thickness is provided with solid model. Static and modal analyses are also performed for verification. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
In this work, a previously proposed Enhanced Assumed Strain (EAS) finite element formulation for thin shells is revised and extended to account for isotropic and anisotropic material non‐linearities. Transverse shear and membrane‐locking patterns are successfully removed from the displacement‐based formulation. The resultant EAS shell finite element does not rely on any other mixed formulation, since the enhanced strain field is designed to fulfil the null transverse shear strain subspace coming from the classical degenerated formulation. At the same time, a minimum number of enhanced variables is achieved, when compared with previous works in the field. Non‐linear effects are treated within a local reference frame affected by the rigid‐body part of the total deformation. Additive and multiplicative update procedures for the finite rotation degrees‐of‐freedom are implemented to correctly reproduce mid‐point configurations along the incremental deformation path, improving the overall convergence rate. The stress and strain tensors update in the local frame, together with an additive treatment of the EAS terms, lead to a straightforward implementation of non‐linear geometric and material relations. Accuracy of the implemented algorithms is shown in isotropic and anisotropic elasto‐plastic problems. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper we address the extension of a recently proposed reduced integration eight‐node solid‐shell finite element to large deformations. The element requires only one integration point within the shell plane and at least two integration points over the thickness. The possibility to choose arbitrarily many Gauss points over the shell thickness enables a realistic and efficient modeling of the non‐linear material behavior. Only one enhanced degree‐of‐freedom is needed to avoid volumetric and Poisson thickness locking. One key point of the formulation is the Taylor expansion of the inverse Jacobian matrix with respect to the element center leading to a very accurate modeling of arbitrary element shapes. The transverse shear and curvature thickness locking are cured by means of the assumed natural strain concept. Further crucial points are the Taylor expansion of the compatible cartesian strain with respect to the center of the element as well as the Taylor expansion of the second Piola–Kirchhoff stress tensor with respect to the normal through the center of the element. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
王振  孙秦 《工程力学》2014,31(5):27-33
基于共旋列式方法发展了一种用于复合材料层合板结构几何非线性分析的简单高效的三结点三角形平板壳元。该壳元由具有面内转动自由度的广义协调膜元GT9与假设剪切应变场和假设单元转角场的广义协调厚薄通用板元TMT组合而成。为避免薄膜闭锁而采用单点积分计算与薄膜应变有关的项, 同时增加一个稳定化矩阵以消除单点积分导致的零能模式。基于层合板一阶剪切变形理论, 给出了考虑层合板具体铺层顺序的修正的横向剪切刚度, 使该壳元可用于中厚层合板结构的分析。由于共旋列式大转动小应变的假设, 共旋列式内核的几何线性的单元刚阵可仅计算一次而保存下来用于整个几何非线性求解的过程以提高计算效率。数值算例表明提出的壳元进行包括复合材料层合板结构的厚薄壳结构的几何非线性分析的精度高且效率高。  相似文献   

8.
In this paper a new reduced integration eight‐node solid‐shell finite element is presented. The enhanced assumed strain (EAS) concept based on the Hu–Washizu variational principle requires only one EAS degree‐of‐freedom to cure volumetric and Poisson thickness locking. One key point of the derivation is the Taylor expansion of the inverse Jacobian with respect to the element center, which closely approximates the element shape and allows us to implement the assumed natural strain (ANS) concept to eliminate the curvature thickness and the transverse shear locking. The second crucial point is a combined Taylor expansion of the compatible strain with respect to the center of the element and the normal through the element center leading to an efficient and locking‐free hourglass stabilization without rank deficiency. Hence, the element requires only a single integration point in the shell plane and at least two integration points in thickness direction. The formulation fulfills both the membrane and the bending patch test exactly, which has, to the authors' knowledge, not yet been achieved for reduced integration eight‐node solid‐shell elements in the literature. Owing to the three‐dimensional modeling of the structure, fully three‐dimensional material models can be implemented without additional assumptions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Accuracy and efficiency are the main features expected in finite element method. In the field of low‐order formulations, the treatment of locking phenomena is crucial to prevent poor results. For three‐dimensional analysis, the development of efficient and accurate eight‐node solid‐shell finite elements has been the principal goal of a number of recent published works. When modelling thin‐ and thick‐walled applications, the well‐known transverse shear and volumetric locking phenomena should be conveniently circumvented. In this work, the enhanced assumed strain method and a reduced in‐plane integration scheme are combined to produce a new eight‐node solid‐shell element, accommodating the use of any number of integration points along thickness direction. Furthermore, a physical stabilization procedure is employed in order to correct the element's rank deficiency. Several factors contribute to the high computational efficiency of the formulation, namely: (i) the use of only one internal variable per element for the enhanced part of the strain field; (ii) the reduced integration scheme; (iii) the prevention of using multiple elements' layers along thickness, which can be simply replaced by any number of integration points within a single element layer. Implementation guidelines and numerical results confirm the robustness and efficiency of the proposed approach when compared to conventional elements well‐established in the literature. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
A new formulation and numerical procedures are developed for the analysis of arbitrary crack propagation in shells using the extended finite element method. The method is valid for completely non‐linear problems. Through‐the‐thickness cracks in sandwich shells are considered. An exact shell kinematics is presented, and a new enrichment of the rotation field is proposed which satisfies the director inextensibility condition. To avoid locking, an enhanced strain formulation is proposed for the 4‐node cracked shell element. A finite strain plane stress constitutive model based on the logarithmic corotational rate is employed. A cohesive zone model is introduced which embodies the special characteristics of the shell kinematics. Stress intensity factors are calculated for selected problems and crack propagation problems are solved. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

11.
This work presents a formulation developed to add capabilities for representing the through thickness distribution of the transverse normal stresses, σz, in first and higher order shear deformable shell elements within a finite element (FE) scheme. The formulation is developed within a displacement based shear deformation shell theory. Using the differential equilibrium equations for two-dimensional elasticity and the interlayer stress and strain continuity requirements, special treatment is developed for the transverse normal stresses, which are thus represented by a continuous piecewise cubic function. The implementation of this formulation requires only C0 continuity of the displacement functions regardless of whether it is added to a first or a higher order shell element. This makes the transverse normal stress treatment applicable to the most popular bilinear isoparametric 4-noded quadrilateral shell elements.

To assess the performance of the present approach it is included in the formulation of a recently developed third order shear deformable shell finite element. The element is added to the element library of the general nonlinear explicit dynamic FE code DYNA3D. Some illustrative problems are solved and results are presented and compared to other theoretical and numerical results.  相似文献   


12.
In this work the recently proposed Reduced Enhanced Solid‐Shell (RESS) finite element, based on the enhanced assumed strain (EAS) method and a one‐point quadrature integration scheme, is extended in order to account for large deformation elastoplastic thin‐shell problems. One of the main features of this finite element consists in its minimal number of enhancing parameters (one), sufficient to circumvent the well‐known Poisson and volumetric locking phenomena, leading to a computationally efficient performance when compared to other 3D or solid‐shell enhanced strain elements. Furthermore, the employed numerical integration accounts for an arbitrary number of integration points through the thickness direction within a single layer of elements. The EAS formulation comprises an additive split of the Green–Lagrange material strain tensor, making the inclusion of nonlinear kinematics a straightforward task. A corotational coordinate system is used to integrate the constitutive law and to ensure incremental objectivity. A physical stabilization procedure is implemented in order to correct the element's rank deficiencies. A variety of shell‐type numerical benchmarks including plasticity, large deformations and contact are carried out, and good results are obtained when compared to well‐established formulations in the literature. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
14.
A C0 three-node shell finite element well suited to non-linear calculations is proposed. The element is based on Mindlin kinematics and the degenerated solid approach. Linear Lagrange functions are used for geometry and displacement interpolations. The formulation is made in the natural material frame. A strain interpolation avoids shear locking and an intermediate material frame related to the element sides is introduced in order to fix nodal transverse shear strain components. The modifications of strain interpolations concern both the non-linear and linear parts of strain and are taken into account in ail calculations, among others in the expression of the initial stress stiffness matrix. A single set of integration points on the normal at the centre of gravity is sufficient, which is very interesting for numerical efficiency especially in the case of non-linear analyses.  相似文献   

15.
16.
The contribution of this paper consists of new development of transverse shear stresses through the thickness and finding an expression for the critical time step for explicit time integration of layered shells. This work presents the finite element (FE) formulation and implementation of a higher‐order shear deformable shell element for dynamic explicit analysis of composite and sandwich shells. The formulation is developed using a displacement‐based third‐order shear deformation shell theory. Using the differential equilibrium equations and the interlayer requirements, special treatment is developed for the transverse shear, resulting in a continuous, piecewise quartic distribution of the transverse shear stresses through the shell thickness. Expressions are developed for the critical time step of the explicit time integration for orthotropic homogeneous and layered shells based on the developed third‐order formulation. To assess the performance of the present shell element, it is implemented in the general non‐linear explicit dynamic FE code DYNA3D. Several problems are solved and results are presented and compared to other theoretical and numerical results. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
A nine node finite element model has been developed for analysis of geometrically non-linear laminated composite shells. The formulation is based on the degenerate solid shell concept and utilizes a set of assumed strain fields as well as assumed displacement Two different local orthogonal co-ordinate systems were used to maintain invariance of the element stiffness matrix. The formulation assumes strain and the determinant of the Jacobian matrix to be linear in the thickness direction. This allows analytical integration in the thickness direction regardless of ply layups. The formulation also allows the reference plane to be different from the shell midsurface. The results of numerical tests demonstrate the validity and the effectiveness of the present approach.  相似文献   

18.
A 6‐node curved triangular shell element formulation based on a co‐rotational framework is proposed to solve large‐displacement and large‐rotation problems, in which part of the rigid‐body translations and all rigid‐body rotations in the global co‐ordinate system are excluded in calculating the element strain energy. Thus, an element‐independent formulation is achieved. Besides three translational displacement variables, two components of the mid‐surface normal vector at each node are defined as vectorial rotational variables; these two additional variables render all nodal variables additive in an incremental solution procedure. To alleviate the membrane and shear locking phenomena, the membrane strains and the out‐of‐plane shear strains are replaced with assumed strains in calculating the element strain energy. The strategy used in the mixed interpolation of tensorial components approach is employed in defining the assumed strains. The internal force vector and the element tangent stiffness matrix are obtained from calculating directly the first derivative and second derivative of the element strain energy with respect to the nodal variables, respectively. Different from most other existing co‐rotational element formulations, all nodal variables in the present curved triangular shell formulation are commutative in calculating the second derivative of the strain energy; as a result, the element tangent stiffness matrix is symmetric and is updated by using the total values of the nodal variables in an incremental solution procedure. Such update procedure is advantageous in solving dynamic problems. Finally, several elastic plate and shell problems are solved to demonstrate the reliability, efficiency, and convergence of the present formulation. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, we present an optimal low‐order accurate piezoelectric solid‐shell element formulation to model active composite shell structures that can undergo large deformation and large overall motion. This element has only displacement and electric degrees of freedom (dofs), with no rotational dofs, and an optimal number of enhancing assumed strain (EAS) parameters to pass the patch tests (both membrane and out‐of‐plane bending). The combination of the present optimal piezoelectric solid‐shell element and the optimal solid‐shell element previously developed allows for efficient and accurate analyses of large deformable composite multilayer shell structures with piezoelectric layers. To make the 3‐D analysis of active composite shells containing discrete piezoelectric sensors and actuators even more efficient, the composite solid‐shell element is further developed here. Based on the mixed Fraeijs de Veubeke–Hu–Washizu (FHW) variational principle, the in‐plane and out‐of‐plane bending behaviours are improved via a new and efficient enhancement of the strain tensor. Shear‐locking and curvature thickness locking are resolved effectively by using the assumed natural strain (ANS) method. We also present an optimal‐control design for vibration suppression of a large deformable structure based on the general finite element approach. The linear‐quadratic regulator control scheme with output feedback is used as a control law on the basis of the state space model of the system. Numerical examples involving static analyses and dynamic analyses of active shell structures having a large range of element aspect ratios are presented. Active vibration control of a composite multilayer shell with distributed piezoelectric sensors and actuators is performed to test the present element and the control design procedure. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
A finite element formulation for refined linear analysis of multilayered shell structures of moderate thickness is presented. An underlying shell model is a direct extension of the first‐order shear‐deformation theory of Reissner–Mindlin type. A refined theory with seven unknown kinematic fields is developed: (i) by introducing an assumption of a zig‐zag (i.e. layer‐wise linear) variation of displacement field through the thickness, and (ii) by assuming an independent transverse shear stress fields in each layer in the framework of Reissner's mixed variational principle. The introduced transverse shear stress unknowns are eliminated on the cross‐section level. At this process, the interlaminar equilibrium conditions (i.e. the interlaminar shear stress continuity conditions) are imposed. As a result, the weak form of constitutive equations (the so‐called weak form of Hooke's law) is obtained for the transverse strains–transverse stress resultants relation. A finite element approximation is based on the four‐noded isoparametric element. To eliminate the shear locking effect, the assumed strain variational concept is used. Performance of the derived finite element is illustrated with some numerical examples. The results are compared with the exact three‐dimensional solutions, as well as with the analytical and numerical solutions obtained by the classical, the first‐order and some representative refined models. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号