首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
In this work, a new application for recycled low‐density polyethylene (LDPE), as rheology modifier of standard lithium lubricating grease formulations, was studied. The effectiveness of this additive was compared with that achieved with a virgin LDPE. With this aim, both types of polymers were added to the formulation during the manufacturing process of greases, following the same standard protocol, to reinforce the role of the thickening agent, the lithium 12‐hidroxystearate. The effect that both lithium soap and LDPE concentrations exert on the rheology of lubricating grease formulations and its relationship with grease microstructure were discussed. Lubricating greases were rheologically characterized through small‐amplitude oscillatory shear and viscous flow measurements. In addition to these, scanning electron microscopy observations and mechanical stability tests were also carried out. In all cases, an increase in soap concentration yields higher values of apparent viscosity and linear viscoelasticity functions. On the other hand, the values of the rheological functions obtained for recycled LDPE‐based lubricating greases are, in general, higher than those obtained for virgin LDPE‐based grease formulations. However, the structural skeleton developed in greases containing recycled LDPE demonstrates less resistance to severe working conditions, showing lower mechanical stability than virgin LDPE‐based grease formulations. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers  相似文献   

2.
A comprehensive rheological characterization of lithium lubricating greases modified with NCO‐terminated polymers has been performed in this work, with special emphasis on the effect of temperature. With this aim, NCO‐terminated polymers were prepared from several di‐ and tri‐functional polyols and polymeric MDI. Afterwards, the reaction between terminal isocyanate groups and 12‐hydroxystearate lithium soap, used as thickener for lubricating grease formulations, was promoted. Transient and steady‐state viscous flow, rheo‐destruction and stress relaxation tests were performed on the different samples studied. In this sense, the influence that temperature, free NCO content, molecular weight, and functionality of the reactive polymers exert on the rheological response of lubricating greases was analyzed. The most important rheological modification was achieved by using the lowest molecular weight polymer. In general, NCO‐terminated polymers significantly dampen the influence of temperature on the rheological functions of the additive‐free lubricating grease. In some cases, the viscosity and/or viscoelastic functions even increase with temperature, especially in formulations with residual free NCO groups. Several experimental flow problems, such as fracture and sample expelling from the measuring tool, are generally found, more frequently in formulations with high NCO content. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

3.
The main goal of this work was to study the feasibility of using a low-density polyethylene (LDPE) as additive to improve the rheological properties of lithium lubricating greases. The combined effect that both soap and LDPE concentrations exerts on the rheology of lithium lubricating greases and its relationship with grease microstructure were studied according to an experimental design based on the response surface methodology (RSM). Different lubricating grease formulations were manufactured by modifying lithium 12-hydroxystereate and LDPE concentrations. Small-amplitude oscillatory shear (SAOS) and viscous flow measurements, as well as mechanical stability tests, were performed. In addition to these, environmental scanning electronic microscopy (ESEM) was used to determine grease microstructure. LDPE was found to be a useful additive to modify grease rheology, acting as filler in the entangled soap network. The values of both apparent viscosity and linear viscoelasticity functions increase with soap and LDPE concentration. However, the addition of LDPE distorts soap microstructural network, yielding greases with lower relative elastic characteristics.  相似文献   

4.
The effect of biaxial orientation by solid‐state crossrolling on the morphology of crystalline polymers including polypropylene (PP), high density polyethylene (HDPE) and Nylon 6/6 was investigated with polarized optical microscopy, atomic force microscopy, wide‐angle X‐ray scattering, and small‐angle X‐ray scattering techniques. It was found that crossrolling gradually changed the initial spherulitic structure into a biaxially oriented crystal texture with chain axis of crystals becoming parallel to the rolling direction for all three polymers. The effect of microstructure change on the macromechanical properties was studied in tension at both ambient temperature and ?40°C. In tension at room temperature, the localized necking deformation of HDPE and PP control changed upon orientation into homogeneous deformation for the entire sample length. This was attributed to that the oriented crystal morphology eliminated the stress concentration, which existed in the original spherulitic structure from lamellae orientation in the polar and equatorial regions. At ambient conditions, the elastic moduli of HDPE and PP were found to decrease slightly with orientation whereas the modulus of Nylon 6/6 increased with increasing orientation. This was due to the fact that the amorphous chains of HDPE and PP are in a rubbery state and orientation increased the shear relaxation in the orientation direction but the amorphous chains of Nylon 6/6 are in the glassy state inhibited the shear relaxation. Both the yield stress and strain hardening exponent increased with increasing orientation for all three polymers. In tension at ?40°C, orientation changed the failure mechanism of all three polymers from brittle fracture into ductile failure, as the original spherulitic structure was changed into an oriented structure with chain axis of crystals becoming parallel to the tension direction, which allowed chain slip deformation of crystals and resulted in oriented samples showing ductile failure. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The melt rheological behavior of neem bark flour (BF) filled high density polyethylene (HDPE) has been studied at varying volume fraction (?f) from 0 to 0.26 at 180, 190, and 200°C in the shear rate range from 100 to 5000 s?1 using extruded pellets of the composites. The melt viscosity of HDPE increases with ?f because the BF particles obstruct the flow of HDPE. With the incorporation of the coupling agent HDPE‐g‐MAH, the viscosity decreased compared to the corresponding compositions in the HDPE/BF systems due to a plasticizing/lubricating effect by HDPE‐g‐MAH. The composites obeyed power law behavior in the melt flow. The power law index decreases with increase in the filler content and increases with temperature for the corresponding systems while the consistency index showed the opposite trend. The activation energy for viscous flow exhibited inappreciable change with either ?f or inclusion of the coupling agent, however, the pre‐exponential factor increased with filler concentration. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

6.
In this work, the linear viscoelastic behavior of PP/PS and PP/HDPE blends modified with SEBS and EPDM, respectively, was studied. Small amplitude oscillatory shear measurements were carried out at different temperatures, ranging from 190°C to 240°C. The storage (G') and loss (G") moduli curves obtained were horizontally shifted and curves of angle delta (δ) (δ = atan (G"/G')) as a function of complex shear modulus (G*), known as van Gurp plots, were obtained at several temperatures, to test the applicability of time‐temperature superposition principle (TTS) to these blends. The results showed that successful application of TTS depends on the flow energy of activation and horizontal shift factors of the individual components of the blend, on the interfacial properties of the blend and on the concentration of compatibilizer added to the blend. TTS application failed for PP/PS blend, but held for PP/HDPE blend. Addition of SEBS to PP/PS blends promoted successful TTS application at specific concentrations that corresponded to interfacial saturation of the dispersed phase. Addition of EPDM did not imply sensitive change on TTS application for the PP/HDPE blends.  相似文献   

7.
Polymer‐modified bitumens are very important to the transportation sector. Polyethylene is one of the most used polymers in bitumen modification. The effects of the structural parameters of polyethylene on its dispersion in bitumen and the performance of the resulting polymer‐modified bitumens were studied. With the addition of different polyethylenes to bitumen, the performance of bitumen at high temperatures increased as the polymer melt‐flow index (MFI) decreased. At low temperatures, the performance of bitumen decreased as the polyethylene MFI decreased. Furthermore, a decrease in the polyethylene MFI intensified its dispersion instability. At very low MFIs, the dispersions were unstable, even under the very high shear forces applied by a double mixer. Moreover, changes in the polyethylene MFI did not improve the dispersion stability at an elevated temperature (165°C). © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3183–3190, 2003  相似文献   

8.
Effect of drawing temperature on the melting behavior of oriented isotactic polypropylene (PP) modified with ethylene‐propylene‐diene monomer rubber with a small amount of high‐density polyethylene (HDPE) is explored in this study. Injection‐molded specimens both neat and 8 vol % modified PP were solid‐state drawn to natural drawing ratio and characterized by X‐ray diffraction, dynamic mechanical analysis (DMA), Charpy impact test and differential scanning calorimetry (DSC). A synergy of orientation and embedding rubber particles caused a significant increase of low‐temperature notched impact strength of oriented blends. It was shown, that the DSC method can be used successfully for the indirect but very sensitive characterization of orientation on a nanometre scale. At the drawing temperature of 120°C, the DSC data indicated an incomplete transition of the PP crystalline structure: This is reflected by splitting and shifting of the melting peak of PP. An increase of the melting temperature of the HDPE inclusions by 3.5°C reflects the high orientation. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
The thermal stability and degradation mechanisms of three semicrystalline polymers (polyethylene terephthalate [PET], high‐density polyethylene [HDPE], and polyamide 6 [nylon 6]) were studied. Thermogravimetric traces were acquired first at heating rates of 1°C/min and 10°C/min, and it was determined that the heating rate significantly affected the thermal decay curves of the three polymers. The results allowed the selection of specific temperatures at which to carry out heating and cooling cycles from room temperature to the molten state. The thermal behaviors of HDPE, nylon 6, and PET each had particular characteristics. HDPE showed the highest thermal resistance, whereas nylon 6 displayed the lowest. PET had the lowest activation energy for degradation, 93.5 kJ/mol, and retained 14 wt% after thermal recycling with no influence of molecular weight. Thermal cycling also revealed gradual morphological changes in HDPE, nylon 6, and PET, and their crystals changed from regular to branched spherulites with variations in the nucleation patterns. Fourier‐transform infrared spectroscopy measurements allowed us to explain the early stages of degradation for each polymer. POLYM. ENG. SCI., 59:2016–2023, 2019. © 2019 Society of Plastics Engineers  相似文献   

10.
E.Jones Parry  D. Tabor 《Polymer》1973,14(12):617-622
A torsion pendulum ( 1 Hz) has been used to investigate the shear modulus and loss tangent of a number of hydrocarbon polymers as a function of temperature at pressures of up to 1200 atmospheres. Low density polyethylene (LDPE), high density polyethylene (HDPE), polypropylene (PP), a natural rubber and an ethylene-vinyl acetate copolymer have been studied. The results show that the relaxation temperatures are increased by the application of hydrostatic pressure, by amounts which range between about 5 and 20°C per 1000 atmospheres. However, it has only proved possible to correlate our results with theory in the case of PP because of the lack of other data, in particular the appropriate compressibility and thermal expansion coefficients. The results also show that if the crystallinity of LDPE and PP is reduced the relaxations are resolvable into two distinct processes.  相似文献   

11.
The effect of high‐density polyethylene (HDPE)/polypropylene (PP) blending on the crystallinity as a function of the HDPE melt index was studied. The melting temperature and total amount of crystallinity in the HDPE/PP blends were lower than those of the pure polymers, regardless of the blend composition and melt index. The effects of the melt index, blending, and foaming conditions (foaming temperature and foaming time) on the void fractions of HDPEs of various melt indices and HDPE/PP blends were also investigated. The void fraction was strongly dependent on the foaming time, foaming temperature, and blend composition as well as the melt index of HDPE. The void fraction of the foamed 30:70 HDPE/PP blend was always higher than that of the foamed 50:50 HDPE/PP blend, regardless of the melt index. The microcellular structure could be greatly improved with a suitable ratio of HDPE to PP and with foaming above the melting temperature for long enough; however, using high‐melt‐index HDPE in the HDPE/PP blends had a deleterious effect on both the void fraction and cell morphology of the blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 364–371, 2004  相似文献   

12.
High‐density polyethylene grafted isotactic polypropylene (PP‐g‐HDPE) was prepared by the imidization reaction between maleic anhydride grafted polyethylene and amine‐grafted polypropylene in a xylene solution. The branch density was adjusted by changes in the molar ratio between maleic anhydride and primary amine groups. Dynamic rheology tests were conducted to compare the rheological properties of linear polyolefins and long‐chain‐branched polyolefins. The effects of the density of long‐chain branches on the rheological properties were also investigated. It was found that long‐chain‐branched hybrid polyolefins had a higher storage modulus at a low frequency, a higher zero shear viscosity, a reduced phase angle, enhanced shear sensitivities, and a longer relaxation time. As the branch density was increased, the characteristics of the long‐chain‐branched structure became profounder. The flow activation energy of PP‐g‐HDPE was lower than that of neat maleic anhydride grafted polypropylene (PP‐g‐MAH) because of the lower flow activation energy of maleic anhydride grafted high‐density polyethylene (HDPE‐g‐MAH). However, the flow activation energy of PP‐g‐HDPE was higher than that of PP‐g‐MAH/HDPE‐g‐MAH blends because of the presence of long‐chain branches. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
A simple and effective way was expected to improve the blending of ultra‐high‐molecular‐weight polyethylene (UHMWPE) in high‐density polyethylene (HDPE) matrix. HDPE/UHMWPE blends were subjected to high temperature melting (HTM) at 280°C for up to 10 h, followed by shear at 175°C. These results were examined by scanning electron microscopy, polarized optical microscopy, and melt rheological behavior. UHMWPE particle was swelled partially during HTM, and this swollen region could be peeled from the particle by the subsequent shear, which resulted in more “dissolution” of UHMWPE in HDPE matrix. These results were also validated by the rheological behavior. POLYM. ENG. SCI., 55:270–276, 2015. © 2014 Society of Plastics Engineers  相似文献   

14.
A novel method of developing cocontinuous morphology in 75/25 and 80/20 w/w polypropylene/high density polyethylene (PP/HDPE) blends in the presence of small amount (0.5 phr) of organoclay has been reported. SEM study indicated a reduction in average domain sizes (D) of disperse HDPE when PP, HDPE, and the organoclay were melt‐blended simultaneously at 200°C. However, when the two‐sequential heating protocol was employed, (that is, the organoclay was first intercalated by HDPE chains at 150°C, followed by melt blending of PP at 200°C), very interestingly a cocontinuous morphology was found even for very asymmetric blend compositions. WAXD study revealed the intercalation of both PP and HDPE chains inside the clay galleries, when PP/HDPE and clay were melt‐mixed together at 200°C. However, when the two‐sequential heating protocol was used the organoclay platelets were selectively intercalated by the HDPE chains. Addition of SEPS in the blend decreased the D of HDPE domains in both the blending methods. Thus, the observed cocontinuous morphology in asymmetric composition of PP/HDPE blend in presence of clay is because of the barrier effect of the clay platelets in the HDPE phase that restrict the phase inversion into the domain/matrix morphology. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
The effect of recycled PP on incompatible blends of virgin polypropylene (PP) and high‐density polyethylene (HDPE) was studied. Recycled PP from urban solid waste was extracted with methyl ethyl ketone and the compatibilizing action of the product before and after extraction was examined. The characterization of the recycled PP was performed by FTIR, NMR, and DSC analyses. Mechanical properties of the blends were evaluated. The results showed partial compatibility of the blend components, reflected in the improvement of the tensile strength and elongation. Best results were achieved by the addition of extracted recycled PP on the 50/50 PP/HDPE blends. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1305–1311, 2001  相似文献   

16.
The melting or plasticating behavior of seven commercial polymers (high density polyethylene, low density polyethylene, polypropylene, polyoxymethylene copolymer, polystyrene, poly(methyl methacrylate), and polycarbonate (PC) was investigated using an experimental apparatus specifically designed to measure the melting rate and the viscous shear stress of a solid polymer on a steel surface under precisely controlled conditions of temperature, velocity, pressure and sample width comparable to actual processing. The melting rate (per unit polymer solid/metal contact area) was found to increase with increasing temperature for all polymers except PC, to decrease with increasing sample width and to increase less than proportionally to velocity. Pressure increased the melting rate somewhat for most of the polymers. The viscous shear stress decreased with increasing temperature for all polymers except PC, decreased with increasing sample width and increased with increasing velocity. Pressure generally increased the viscous shear stress. PC showed an unusual behavior with a maximum in the melting rate near 4200°F(215.5°C) and also a maximum in the viscous shear stress near 445°F (229.4°C). The present melting model could be examined unequivocally for the first time using our experimental results. Comparison of our experimental results with the predictions of the present melting model clearly indicates the inadequacy of the present melting model, Our experimental results will provide a basis for rational development of a reliable melting model.  相似文献   

17.
Geometrical dependence of viscosity of polymethylmethacrylate (PMMA) and high density polyethylene (HDPE) are studied by means of a twin‐bore capillary rheometer based on power‐law model. Contrary geometrical dependences of shear viscosity are observed for PMMA between 210 and 255°C, but similar geometrical dependences are revealed for HDPE between 190 and 260°C. The fact that wall slip can not successfully explain the irregular geometrical dependence of PMMA viscosity is found in this work. Then, pressure effect and dependence of fraction of free volume (FFV) on both pressure and temperature are proposed to be responsible for the geometrical dependence of capillary viscosity of polymers. The dependence of shear viscosity on applied pressure is first investigated based on the Barus equation. By introducing a shift factor, shear viscosity curves of PMMA measured under different pressures can be shifted onto a set of parallel plots by correcting the pressure effect and the less shear‐thinning then disappears, especially at high pressure. Meanwhile, the FFV and combining strength among molecular chains are evaluated for both samples based on molecular dynamics simulation, which implies that the irregular geometrical dependence of PMMA viscosity can not be attributed to the wall slip behavior. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39982.  相似文献   

18.
All‐polyethylene composites exhibiting substantially improved toughness/stiffness balance are readily produced during conventional injection molding of high density polyethylene (HDPE) in the presence of bimodal polyethylene reactor blends (RB40) containing 40 wt% ultrahigh molar mass polyethylene (UHMWPE) dispersed in HDPE wax. Scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) analyses shows that flow‐induced crystallization affords extended‐chain UHMWPE nanofibers forming shish which nucleates HDPE crystallization producing shish‐kebab structures as reinforcing phases. This is unparalleled by melt compounding micron‐sized UHMWPE. Injection molding of HDPE with 30 wt% RB40 at 165 °C affords thermoplastic all‐PE composites (12 wt% UHMWPE), improved Young's modulus of 3400 MPa, tensile strength of 140 MPa, and impact resistance of 22.0 kJ/m2. According to fracture surface analysis, the formation of skin‐intermediate‐core structures accounts for significantly improved impact resistance. At constant RB40 content both morphology and mechanical properties strongly depend upon processing temperature. Upon increasing processing temperature from 165 °C to 250 °C the average shish‐kebab diameter increases from the nanometer to micron range, paralleled by massive loss of self‐reinforcement above 200 °C. The absence of shish‐kebab structure at 250 °C is attributed to relaxation of polymer chains and stretch‐coil transition impairing shish formation.  相似文献   

19.
The use of polyethylene is limited due to its low impact strength among other mechanical properties at extreme ambient temperatures, for example at ?46 °C and 66 °C. In this work, different polymer components, such as ultra-high molecular weight polyethylene (UHMWPE) and ethylene-vinyl acetate (EVA), were incorporated in high density polyethylene (HDPE) to test their ability to improve toughness of HDPE at extreme ambient temperatures. The polymer blends were processed by extrusion and injection molding and characterized by rotational rheometry, electron microscopy, thermal analysis, tensile, impact and dynamic mechanical tests. The results showed that low concentrations of EVA and UHMWPE in HDPE increased substantially the impact strength of HDPE at room temperature as well as in extreme ambient temperatures (?46 °C and 66 °C). This result indicates that these HDPE blends can be considered good candidates to replace pure HDPE in applications in which high values of toughness are required at extreme ambient temperatures.  相似文献   

20.
A theoretical study of non-isothermal superimposed flow of two polymer melts in wire coating co-extrusion dies has been carried out. Numerical methods have been employed to solve the coupled momentum- and energy-balance equations. Various combinations of three polymers—namely, high density polyethylene (HDPE), polystyrene (PS) and low density polyethylene (LDPE) have been studied and least squares curve fitted quadratic polynomials have been used for constitutive equations for all three polymers in non-Newtonian high shear rate regions. A multitude of thermal and mechanical boundary conditions can be treated by this algorithm. It was found that temperature and velocity profiles in the die depend significantly on the arrangement of the polymers. Maximum temperature rise has been noted to increase sharply with wire velocity but it can be reduced by increasing the die radius. When the thickness of the outer layer is increased from zero, the shear stress at the wall undergoes a dramatic change (if the viscosities of the polymers are different) at small values of the flow rate ratio and it reaches an asymptotic value at large values of flow rate ratio. It was also found that viscosity ratio at the interface can be reduced by changing the initial temperatures of the liquids. It was observed in some cases that large errors in the calculation of rheological and thermal variables for this problem can be made if temperature rise due to viscous dissipation is not considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号