首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is evidence that nanoparticles can induce endothelial dysfunction. Here, the effect of monodisperse amorphous silica nanoparticles (SiO2‐NPs) of different diameters on endothelial cells function is examined. Human endothelial cell line (EA.hy926) or primary human pulmonary artery endothelial cells (hPAEC) are seeded in inserts introduced or not above triple cell co‐cultures (pneumocytes, macrophages, and mast cells). Endothelial cells are incubated with SiO2‐NPs at non‐cytotoxic concentrations for 12 h. A significant increase (up to 2‐fold) in human monocytes adhesion to endothelial cells is observed for 18 and 54 nm particles. Exposure to SiO2‐NPs induces protein expression of adhesion molecules (ICAM‐1 and VCAM‐1) as well as significant up‐regulation in mRNA expression of ICAM‐1 in both endothelial cell types. Experiments performed with fluorescent‐labelled monodisperse amorphous SiO2‐NPs of similar size evidence nanoparticle uptake into the cytoplasm of endothelial cells. It is concluded that exposure of human endothelial cells to amorphous silica nanoparticles enhances their adhesive properties. This process is modified by the size of the nanoparticle and the presence of other co‐cultured cells.  相似文献   

2.
J. Sun  Y.W. Lu  X. Han 《Materials Letters》2007,61(18):3783-3786
A simple route was developed to synthesize the hybrid nanocomposite with Fe nanoparticles (NPs) dispersed on the surface of SiO2 nanowires (NWs), where SiO2 NWs with the diameter of 20-40 nm were produced by heating single-crystal silicon wafer, and Fe NPs in the size range of 3-20 nm were generated by heating Fe powders. The nucleation and growth of Fe NPs follows the solid-vapor-solid (S-V-S) mechanism, namely, Fe powders firstly sublime and then Fe atoms deposit on SiO2 NWs to form Fe NPs.  相似文献   

3.
The potential toxicity of nanoparticles is addressed by utilizing a putative attractive model in developmental biology and genetics: the zebrafish (Danio rerio). Transparent zebrafish embryos, possessing a high degree of homology to the human genome, offer an economically feasible, medium‐througput screening platform for noninvasive real‐time assessments of toxicity. Using colloidal silver (cAg) and gold nanoparticles (cAu) in a panoply of sizes (3, 10, 50, and 100 nm) and a semiquantitative scoring system, it is found that cAg produces almost 100% mortality at 120 h post‐fertilization, while cAu produces less than 3% mortality at the same time point. Furthermore, while cAu induces minimal sublethal toxic effects, cAg treatments generate a variety of embryonic morphological malformations. Both cAg and cAu are taken up by the embryos and control experiments, suggesting that cAg toxicity is caused by the nanoparticles themselves or Ag+ that is formed during in vivo nanoparticle destabilization. Although cAg toxicity is slightly size dependent at certain concentrations and time points, the most striking result is that parallel sizes of cAg and cAu induce significantly different toxic profiles, with the former being toxic and the latter being inert in all exposed sizes. Therefore, it is proposed that nanoparticle chemistry is as, if not more, important than specific nanosizes at inducing toxicity in vivo. Ultimately such assessments using the zebrafish embryo model should lead to the identification of nanomaterial characteristics that afford minimal or no toxicity and guide more rational designs of materials on the nanoscale.  相似文献   

4.
This article describes coating of magnetite nanoparticles (NPs) with amorphous silica shells. Controlled co-precipitation technique under N2 gas was used to prevent undesirable critical oxidation of Fe2+. The synthesised Fe3O4 NPs were first coated with trisodium citrate to achieve solution stability and then covered by SiO2 layer using Stober method. For uncoated Fe3O4 NPs, the results showed an octahedral geometry with saturation magnetisation range of 82–96?emu/g and coercivity of 85–120?Oe for particles between 35 and 96?nm, respectively. The best value of specific surface area (41?m2/g) for Fe3O4 alone was obtained at 0.9?M NaOH at 750?rpm and it increased to about 81?m2/g for Fe3O4/SiO2 combination. The total thickness and the structure of core–shell was measured and studied by transmission electron microscopy. The average particles size was about 50?nm, indicating the presence of about 15?nm SiO2 layer. Finally, the stable magnetic fluid contained well-dispersed magnetite-silica nanocomposites which showed monodispersity and fast magnetic response.  相似文献   

5.
《Optical Materials》2014,36(12):2604-2612
CdS nanoparticles (NPs) were generated in onion-like ordered mesoporous SiO2 films through a modified sol–gel process using P123 as a structure directing agent. Initially Cd2+ doped (12 equivalent mol% with respect to the SiO2) mesoporous SiO2 films were prepared on glass substrate. These films after heat-treatment at 350 °C in air yielded transparent mesoporous SiO2 films having hexagonally ordered onion-like pore channels embedded with uniformly dispersed CdO NPs. The generated CdO NPs were transformed into CdS NPs after exposing the films in H2S gas at 200 °C for 2 h. The as-prepared CdS NPs incorporated mesoporous SiO2 films (transparent and bright yellow in color) showed a band-edge emission at 485 nm and a weak surface defect related emission at 530 nm. During ageing of the films in ambient condition the band-edge emission gradually weakened with time and almost disappeared after about 15 days with concomitant increase of defect related strong surface state emission band near 615 nm. This transformation was related to the decay of initially formed well crystalline CdS to relatively smaller and weakly crystalline CdS NPs with surface defects due to gradual oxidation of surface sulfide. At this condition the embedded CdS NPs show large Stokes shifted (∼180 nm) intense broad emission which could be useful for luminescent solar concentrators. The detailed process was monitored by UV–Visible, FTIR and Raman spectroscopy, XPS, XRD and TEM studies. The evolution of photoluminescence (PL) and life times of CdS/SiO2 films were monitored with respect to the ageing time.  相似文献   

6.
Graphitic carbon nitride modified with plasmonic Ag@SiO2 core–shell nanoparticles (g‐C3N4/Ag@SiO2) are proposed for enhanced photocatalytic solar hydrogen evolution under visible light. Nanosized gaps between the plasmonic Ag nanoparticles (NPs) and g‐C3N4 are created and precisely modulated to be 8, 12, 17, and 21 nm by coating SiO2 shells on the Ag NPs. The optimized photocatalytic hydrogen production activity for g‐C3N4/Ag@SiO2 is achieved with a nanogap of 12 nm (11.4 μmol h−1) to be more than twice as high as that of pure g‐C3N4 (5.6 μmol h−1). The plasmon resonance energy transfer (PRET) effect of Ag NPs is innovatively proved from a physical view on polymer semiconductors for photoredox catalysis. The PRET effect favors the charge carrier separation by inducing electron–hole pairs efficiently formed in the near‐surface region of g‐C3N4. Furthermore, via engineering the width of the nanogap, the PRET and energy‐loss Förster resonance energy transfer processes are perfectly balanced, resulting in considerable enhancement of photocatalytic hydrogen production activity over the g‐C3N4/Ag@SiO2 plasmonic photocatalyst.  相似文献   

7.
SiO2 nanoparticles (NPs) surface modified with polyethyleneimine-oleic acid complex (PEI-OA) has successfully prepared in a simple manner as a stabilizer of metal (Ni) fine particles (FPs) as well as a component of Ni/SiO2 composite particles. Starting from SiO2 NPs which were collected through centrifugation of commercial SiO2 colloids, it was found that PEI-OA can effectively adsorbed on collected SiO2 NPs surface during their redispersion process in toluene with the assistance of ultrasonication. The aggregated particle size (Z-average size) in toluene could be successfully reduced to c.a. 100 nm under saturated adsorption of PEI-OA. It was also found that PEI-OA-modified SiO2 NPs can effectively attach to the Ni FPs by a simple mixing process in toluene. The FE-SEM observation confirmed the adsorption of the PEI-OA-modified SiO2 NPs on the Ni FPs without forming severe NP aggregates. Owing to the attachment of the PEI-OA-modified SiO2 NPs with surfaces that are compatible to toluene and α-terpineol, the suspension stability of the Ni/SiO2 composite particles in these solvents drastically improved. The result was confirmed by the effective reduction of the sedimentation velocity of diluted suspensions as well as by the reduction of the viscosity of dense suspensions.  相似文献   

8.
Silicon dioxide (SiO2), titanium dioxide (TiO2), and zinc oxide (ZnO) are currently among the most widely used nanoparticles (NPs) in the food industry. This could potentially lead to unintended exposure of the gastrointestinal tract to these NPs. This study aims to investigate the potential side‐effects of these food‐borne NPs on intestinal cells and to mechanistically understand the observed biological responses. Among the panel of tested NPs, ZnO NPs are the most toxic. Consistently in all three tested intestinal cell models, ZnO NPs invoke the most inflammatory responses from the cells and induce the highest intracellular production of reactive oxygen species (ROS). The elevated ROS levels induce significant damage to the DNA of the cells, resulting in cell‐cycle arrest and subsequently cell death. In contrast, both SiO2 and TiO2 NPs elicit minimum biological responses from the intestinal cells. Overall, the study showcases the varying capability of the food‐borne NPs to induce a cellular response in the intestinal cells. In addition to physicochemical differences in the NPs, the genetic landscape of the intestinal cell models governs the toxicology profile of these food‐borne NPs.  相似文献   

9.
The mononuclear phagocyte system in the liver is a frequent target for nanoparticles (NPs). A toxicological profiling of metal‐based NPs is performed in Kupffer cell (KC) and hepatocyte cell lines. Sixteen NPs are provided by the Nanomaterial Health Implications Research Consortium of the National Institute of Environmental Health Sciences to study the toxicological effects in KUP5 (KC) and Hepa 1–6 cells. Five NPs (Ag, CuO, ZnO, SiO2, and V2O5) exhibit cytotoxicity in both cell types, while SiO2 and V2O5 induce IL‐1β production in KC. Ag, CuO, and ZnO induced caspase 3 generated apoptosis in both cell types is accompanied by ion shedding and generation of mitochondrial reactive oxygen species (ROS) in both cell types. However, the cell death response to SiO2 in KC differs by inducing pyroptosis as a result of potassium efflux, caspase 1 activation, NLRP3 inflammasome assembly, IL‐1β release, and cleavage of gasdermin‐D. This releases pore‐performing peptide fragments responsible for pyroptotic cell swelling. Interestingly, although V2O5 induces IL‐1β release and delays caspase 1 activation by vanadium ion interference in membrane Na+/K+ adenosine triphosphate (ATP)ase activity, the major cell death mechanism in KC (and Hepa 1–6) is caspase 3 mediated apoptosis. These findings improve the understanding of the mechanisms of metal‐based engineered nanomaterial (ENM) toxicity in liver cells toward comprehensive safety evaluation.  相似文献   

10.
The recent ban of titanium dioxide (TiO2) as a food additive (E171) in France intensified the controversy on safety of foodborne‐TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non‐obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short‐chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro‐inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non‐obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.  相似文献   

11.
The CdO NPs was synthesized using the sol–gel method and the nanoparticles were characterized using an UV–Vis spectrophotometer, with shape and size were examined by SEM and XRD. The XRD analysis respects the Bragg’s law and confirmed the crystalline nature of CdO nanoparticles. From the XRD, the average size of CdO NPs was found to be around 41 nm. The photoluminescence spectra of the CdO NPs, as recorded at room temperature, were excited at 300 nm wavelength. The broad emission peaks were between 600 and 650 nm (orange emission). The optical limiting performance of the nanocomposite was described in the sol–gel state. Also, this study has observed and studied the diffraction rings generated in CdO NPs using the same CW laser. The number of rings increases almost exponentially with an increasing volume fraction of SiO2 in the nanocomposites. The refractive index change, Δn, and effective nonlinear refractive index, n 2, were found to be 10?4 and 10?8 cm2/W, respectively. The effective nonlinear refractive index, n 2, was determined based on the observed number of rings. The threshold values of the CdO, CdO–2SiO2 and CdO–5SiO2 nanocomposites are 7.1, 6.55 and 6.34 mW, respectively. This large nonlinearity is attributed to the thermal effect. The present studies suggest that the nanocomposite is a potential candidate for optical device applications such as the optical limiters. The thermal blooming technique was applied to evaluate the thermo-optic coefficient and thermal diffusivity of the CdO NPs. In the thermal blooming experimental setup a transistor–transistor logic modulated CW laser of wavelength 532 nm was used as the excitation source.  相似文献   

12.
Monodisperse Ni nanoparticles (NPs) have been synthesized by the reduction of nickel(II) acetylacetonate with the borane-tributylamine complex in a mixture of oleylamine and oleic acid. These Ni NPs are an active catalyst for the hydrolysis of the ammonia-borane (AB, H3N·BH3) complex under ambient conditions and their activities are dependent on the chemical nature of the oxide support that they were deposited on. Among various oxides (SiO2, Al2O3, and CeO2) tested, SiO2 was found to enhance Ni NP catalytic activity due to the etching of the 3.2 nm Ni NPs giving Ni(II) ions and the subsequent reduction of Ni(II) that led to the formation of 1.6 nm Ni NPs on the SiO2 surface. The kinetics of the hydrolysis of AB catalyzed by Ni/SiO2 was shown to be dependent on catalyst and substrate concentration as well as temperature. The Ni/SiO2 catalyst has a turnover frequency (TOF) of 13.2 mol H2·(mol Ni)−1 · min−1—the best ever reported for the hydrolysis of AB using a nickel catalyst, an activation energy of 34 kJ/mol ± 2 kJ/mol and a total turnover number of 15,400 in the hydrolysis of AB. It is a promising candidate to replace noble metals for catalyzing AB hydrolysis and for hydrogen generation under ambient conditions.  相似文献   

13.
Silica (SiO2)-coated rhodium (Rh) nanoparticles were prepared using a water-in-oil microemulsion of polyoxyethylene (15) cetyl ether, cyclohexane and water. SiO2-coated Rh nanoparticles were obtained by hydrolyzing metal alkoxide (tetraethylorthosilicate, TEOS) in the solution containing Rh complex nanoparticles followed by thermal and reduction treatments. In the SiO2-coated Rh nanoparticle, a Rh particle with an average diameter of 4.1 nm was located nearly at the center of each spherical SiO2 particle. The SiO2 layer was approximately 15 nm thick. Since the Rh particle was wholly surrounded by SiO2, the Rh particle of the SiO2-coated Rh nanoparticle exhibited an extremely high thermal stability. Furthermore, the porous structure of the SiO2 layer could be controlled by the hydrolysis conditions of TEOS.  相似文献   

14.
The paper describes molecular orientation of nonlinear optical (NLO) polymer monolayer transferred onto a sphere-shaped silica nanoparticle monolayer using optical waveguide spectroscopy. Structurally well-defined hybrid polymer nanoassemblies were constructed through bottom-up approaches: Langmuir–Blodgett technique and immersion method. Silica nanoparticles (SiO2 NPs, 40–50 nm diameter) were immobilized on a quartz waveguide using cationic polymer Langmuir–Blodgett films (nanosheets) as a template. The SiO2 NPs took a uniformly distributed monolayer formation without any aggregates, which minimizes light scattering. This allows us to gain reproducible absorption spectra of dye molecules embedded in polymer nanosheet monolayer on the nanoscale rough surface using optical waveguide spectroscopy. The NLO polymer nanosheets containing disperse red 1 (DR) were transferred onto the SiO2 NP monolayer. The polarized absorption spectra were obtained; the s-light absorption was larger than the p-light absorption, indicating that polymer nanosheets are wrapped around SiO2 NPs so that DR moieties undergo molecular disorientation not to form H-aggregates. This method provides us with useful information on structure–property relationship between nanoshaped inorganic nanoparticle and organic functional molecules in hybrid nanoassemblies.  相似文献   

15.
Plasmonic metal nanostructures are widely used as subwavelength light concentrators to enhance light harvesting of organic solar cells through two photophysical effects, including enhanced local electric field (ELEF) and antenna‐amplified light scattering (AALS), while their adverse quenching effect from surface energy transfer (SET) should be suppressed. In this work, a comprehensive study to unambiguously distinguish and quantitatively determine the specific influence and contribution of each effect on the overall performance of organic solar cells incorporated with Ag@SiO2 core–shell nanoparticles (NPs) is presented. By investigating the photon conversion efficiency (PCE) as a function of the SiO2 shell thickness, a strong competition between the ELEF and SET effects in the performance of the devices with the NPs embedded in the active layers is found, leading to a maximum PCE enhancement of 12.4% at the shell thickness of 5 nm. The results give new insights into the fundamental understanding of the photophysical mechanisms responsible for the performance enhancement of plasmonic organic solar cells and provide important guidelines for designing more‐efficient plasmonic solar cells in general.  相似文献   

16.
The synthesis of Au@mesoporous SiO2/rhodamine B isothiocyanate (Au@mSiO2/RBITC) composite nanoparticles (NPs) is presented and their unique biofunctional properties are studied. The structure and morphology of the NPs are characterized by X‐ray powder diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. These NPs can not only be functionalized for fluorescence imaging, but also possess well‐defined mesopore structures for drug loading and strong infrared surface plasmon absorption for light‐controlled drug release and photothermal therapy for cancer cells. In the biological experiments, one 808 nm laser is coupled to a confocal laser scanning microscopy (CLSM) system to monitor the photothermal therapy, drug release, and cell position and viability in real time by using the multichannel function of CLSM for the first time. Such novel nanomaterials offer a new chemotherapeutic route for cancer treatment by combining cell imaging and hyperthermia in a synergistic way.  相似文献   

17.
Silicon dioxide nanoparticles (SiO2 NPs) are widely invested in medicine, industry, agriculture, consuming products, optical imaging agents, cosmetics, and drug delivery. However, the toxicity of these NPs on human health and the ecosystem have not been extensively studied and little information is available about their behavioural toxicities. The current study aimed to find out the behavioural alterations that might be induced by chronic exposure to 10 nm SiO2 NPs. BALB/C mice were subjected to 36 injections of SiO2 NPs (2 mg/kg Bw) and subjected to 11 neurobehavioural tests: elevated plus‐maze test, elevated zero‐maze test, multiradial maze test, open field test, hole‐board test, light‐dark box test, forced swimming test, tail‐suspension test, Morris water‐maze test, Y‐maze test and multiple T‐maze test. Treated mice demonstrated anxiety‐like effect, depression tendency, behavioural despair stress, exploration and locomotors activity reduction with error induction in both reference and working memories. The findings may suggest that silica NPs are anxiogenic and could aggravate depression affecting memory, learning, overall activity and exploratory behaviour. Moreover, the findings may indicate that these nanomaterials (NMs) may induce potential oxidative stress in the body leading to neurobehavioural alterations with possible changes in the vital organ including the central nervous system.  相似文献   

18.
Sunscreens containing ZnO and TiO2 nanoparticles (NPs) are increasingly applied to skin over long time periods to reduce the risk of skin cancer. However, long‐term toxicological studies of NPs are very sparse. The in vitro toxicity of ZnO and TiO2 NPs on keratinocytes over short‐ and long‐term applications is reported. The effects studied are intracellular formation of radicals, alterations in cell morphology, mitochondrial activity, and cell‐cycle distribution. Cellular response depends on the type of NP, concentration, and exposure time. ZnO NPs have more pronounced adverse effects on keratinocytes than TiO2. TiO2 has no effect on cell viability up to 100 μg mL?1, whereas ZnO reduces viability above 15 μg mL?1 after short‐term exposure. Prolonged exposure to ZnO NPs at 10 μg mL?1 results in decreased mitochondrial activity, loss of normal cell morphology, and disturbances in cell‐cycle distribution. From this point of view TiO2 has no harmful effect. More nanotubular intercellular structures are observed in keratinocytes exposed to either type of NP than in untreated cells. This observation may indicate cellular transformation from normal to tumor cells due to NP treatment. Transmission electron microscopy images show NPs in vesicles within the cell cytoplasm, particularly in early and late endosomes and amphisomes. Contrary to insoluble TiO2, partially soluble ZnO stimulates generation of reactive oxygen species to swamp the cell redox defense system thus initiating the death processes, seen also in cell‐cycle distribution and fluorescence imaging. Long‐term exposure to NPs has adverse effects on human keratinocytes in vitro, which indicates a potential health risk.  相似文献   

19.
The continuous increasing of engineered nanomaterials (ENMs) in our environment, their combinatorial diversity, and the associated genotoxic risks, highlight the urgent need to better define the possible toxicological effects of ENMs. In this context, we present a new high‐throughput screening (HTS) platform based on the cytokinesis‐block micronucleus (CBMN) assay, lab‐on‐chip cell sorting, and automated image analysis. This HTS platform has been successfully applied to the evaluation of the cytotoxic and genotoxic effects of silver nanoparticles (AgNPs) and silica nanoparticles (SiO2NPs). In particular, our results demonstrate the high cyto‐ and genotoxicity induced by AgNPs and the biocompatibility of SiO2NPs, in primary human lymphocytes. Moreover, our data reveal that the toxic effects are also dependent on size, surface coating, and surface charge. Most importantly, our HTS platform shows that AgNP‐induced genotoxicity is lymphocyte sub‐type dependent and is particularly pronounced in CD2+ and CD4+ cells.  相似文献   

20.
The discovery of Pickering emulsion templated assembly enables the design of a hybrid colloidal capsule with engineered properties. However, the underlying mechanisms by which nanoparticles affect the mechanical properties of the shell are poorly understood. Herein, in situ mechanical compression on the transmission electron microscope and aberration‐corrected scanning transmission microscope are unprecedentedly implemented to study the intrinsic effect of nanoparticles on the mechanical properties of the calcium carbonate (CaCO3)‐decorated silica (SiO2) colloidal capsule. The stiff and brittle nature of the colloidal capsule is due to the interfacial chemical bonding between the CaCO3 nanoparticles and SiO2 inner shell. Such bonding strengthens the mechanical strength of the SiO2 shell (166 ± 14 nm) from the colloidal capsule compared to the thicker single SiO2 shell (310 ± 70 nm) from the silica hollow sphere. At elevated temperature, this interfacial bonding accelerates the formation of the single calcium silicate shell, causing shell morphology transformation and yielding significantly enhanced mechanical strength by 30.9% and ductility by 94.7%. The superior thermal durability of the heat‐treated colloidal capsule holds great potential for the fabrication of the functional additives that can be applied in the wide range of applications at elevated temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号