首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nonparametric control charts are widely used when the parametric distribution of the quality characteristic of interest is questionable. In this study, we proposed a nonparametric progressive mean control chart, namely the nonparametric progressive mean chart, for efficient detection of disturbances in process location or target. The proposed chart is compared with the recently proposed nonparametric exponentially weighted moving average and nonparametric cumulative sum charts using different run length characteristics such as the average run length, standard deviation of the run length, and the percentile points of the run length distribution. The comparisons revealed that the proposed chart outperformed recent nonparametric exponentially weighted moving average and nonparametric cumulative sum charts, in terms of detecting the shifts in process target. A real life example concerning the fill heights of soft drink beverage bottles is also provided to illustrate the application of the proposed nonparametric control chart. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
The maximum exponentially weighted moving average (MaxEWMA) control charts have gained considerable attention for simultaneously detecting both increases and decreases in the mean and/or dispersion of a process. In this paper, we propose a new auxiliary information‐based (AIB) MaxEWMA control chart, called the AIB‐MaxEWMA chart. The AIB‐MaxEWMA chart encompasses the existing MaxEWMA chart. Extensive Monte Carlo simulations are performed to evaluate the average run length, standard deviation of the run length, and diagnostic abilities of the AIB‐MaxEWMA chart. An extensive comparison reveals that the AIB‐MaxEWMA chart performs uniformly better than the MaxEWMA chart. An example is also used to explain the implementation and working of the AIB‐MaxEWMA chart. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are commonly used for monitoring the process mean. In this paper, a new hybrid EWMA (HEWMA) control chart is proposed by mixing two EWMA control charts. An interesting feature of the proposed control chart is that the traditional Shewhart and EWMA control charts are its special cases. Average run lengths are used to evaluate the performances of each of the control charts. It is worth mentioning that the proposed HEWMA control chart detects smaller shifts substantially quicker than the classical CUSUM, classical EWMA and mixed EWMA–CUSUM control charts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Control charting cyber vulnerabilities is challenging because the same vulnerabilities can remain from period to period. Also, hosts (personal computers, servers, printers, etc.) are often scanned infrequently and can be unavailable during scanning. To address these challenges, control charting of the period-to-period demerits per host using a hybrid moving centerline residual-based and adjusted demerit (MCRAD) chart is proposed. The intent is to direct limited administrator resources to unusual cases when automatic patching is insufficient. The proposed chart is shown to offer superior average run length performance compared with three alternative methods from the literature. The methods are illustrated using three datasets.  相似文献   

5.
With the weighted loss function, a new single Exponential Weighted Moving Average (EWMA) chart (WLE chart hereafter for short) is proposed to detect both mean and variance shifts simultaneously. It includes the EWMA control chart based on the semicircle statistic and weighted‐loss‐function control chart as special cases. Numerical studies show that the WLE chart is superior to the weighted‐loss‐function Cumulative Sum (CUSUM) chart when the mean and standard deviation shifts are both small, and offers at least comparable detection ability with the WLC chart in other cases. Compared with the Shiryaev–Roberts chart, the WLE chart has a better or comparable performance except for small and moderate mean shifts. Furthermore, an equivalent form of the WLE chart is developed to diagnose the source and direction of a process change. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
In the category of memory‐type control charts, progressive mean control chart was proposed recently, for monitoring the process location. Here we show, through the derivation, that the plotting statistic for the progressive mean control chart becomes a special case of exponentially weighted moving average when the sensitivity parameter becomes reciprocal of the sample number. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The exponentially weighted moving average (EWMA) control chart is one of a potentially powerful process monitoring tool of the statistical process control. The EWMA chart has now been widely used because of its excellent ability to detect small to moderate shifts in the process parameter(s). In this study, we propose a new nonparametric/distribution‐free EWMA chart for efficiently monitoring the changes in the process variability. We use extensive Monte Carlo simulations to compute the run length profiles of the proposed EWMA chart. For a better performance comparison, the proposed EWMA chart is compared with a recent existing EWMA chart that has already shown to have better performance than the existing control charts. It turns out that the proposed EWMA chart performs substantially and uniformly better than the existing powerful EWMA chart. The working and implementation of the proposed and existing EWMA charts with the help of an illustrative example are also included in this study. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

8.
The cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are potentially powerful process monitoring tool because of their excellent speed in detecting small to moderate shifts in the process parameters. These control charts can be further improved by integrating them with the conforming run length control chart, resulting in the synthetic CUSUM (SynCUSUM) and synthetic EWMA (SynEWMA) charts. In this paper, we enhance the detection abilities of the SynCUSUM and SynEWMA charts using the auxiliary information. With suitable assumptions, the proposed control charts encompass the existing SynCUSUM, SynEWMA, CUSUM, and EWMA charts. Extensive Monte Carlo simulations are used to study the run length profiles of the proposed control charts. It turns out that the proposed near‐optimal control charts with the auxiliary information perform uniformly and substantially better than the existing near‐optimal SynCUSUM, SynEWMA, CUSUM, and EWMA charts. The proposed and existing control charts are also illustrated with the help of an example. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

9.
The control chart is a very popular tool of statistical process control. It is used to determine the existence of special cause variation to remove it so that the process may be brought in statistical control. Shewhart‐type control charts are sensitive for large disturbances in the process, whereas cumulative sum (CUSUM)–type and exponentially weighted moving average (EWMA)–type control charts are intended to spot small and moderate disturbances. In this article, we proposed a mixed EWMA–CUSUM control chart for detecting a shift in the process mean and evaluated its average run lengths. Comparisons of the proposed control chart were made with some representative control charts including the classical CUSUM, classical EWMA, fast initial response CUSUM, fast initial response EWMA, adaptive CUSUM with EWMA‐based shift estimator, weighted CUSUM and runs rules–based CUSUM and EWMA. The comparisons revealed that mixing the two charts makes the proposed scheme even more sensitive to the small shifts in the process mean than the other schemes designed for detecting small shifts. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We evaluate the performance of the Crosier's cumulative sum (C‐CUSUM) control chart when the probability distribution parameters of the underlying quality characteristic are estimated from Phase I data. Because the average run length (ARL) under estimated parameters is a random variable, we study the estimation effect on the chart performance in terms of the expected value of the average run length (AARL) and the standard deviation of the average run length (SDARL). Previous evaluations of this control chart were conducted while assuming known process parameters. Using the Markov chain and simulation approaches, we evaluate the in‐control performance of the chart and provide some quantiles for its in‐control ARL distribution under estimated parameters. We also compare the performance of the C‐CUSUM chart to that of the ordinary CUSUM (O‐CUSUM) chart when the process parameters are unknown. Our results show that large number of Phase I samples are required to achieve a quite reasonable performance. Additionally, the performance of the C‐CUSUM chart is found to be superior to that of the O‐CUSUM chart. Finally, we recommend the use of a recently proposed bootstrap procedure in designing the C‐CUSUM chart to guarantee, at a certain probability, that the in‐control ARL will be of at least the desired value using the available amount of Phase I data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A New Chart for Monitoring Service Process Mean   总被引:1,自引:0,他引:1  
Control charts are demonstrated effective in monitoring not only manufacturing processes but also service processes. In service processes, many data came from a process with nonnormal distribution or unknown distribution. Hence, the commonly used Shewhart variable control charts are not suitable because they could not be properly constructed. In this article, we proposed a new mean chart on the basis of a simple statistic to monitor the shifts of the process mean. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed chart. Furthermore, an arcsine transformed exponentially weighted moving average chart was proposed because the average run lengths of this modified chart are more intuitive and reasonable than those of the mean chart. We would recommend the arcsine transformed exponentially weighted moving average chart if we were concerned with the proper values of the average run length. A numerical example of service times with skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the proposed charts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Memory based control charts are developed as alternatives to the Shewhart charts for the detection of small sustaining process shifts. Among the widely used memory control charts are the EWMA (Exponentially Weighted Moving Average), CUSUM (Cumulative Sum), and moving average schemes. Relative to the CUSUM chart, the EWMA and moving average charts are quite basic. The EWMA chart uses a weighted average as the chart statistic while the time-weighted moving average chart is based on unweighted moving average. The moving average statistic of width w is simply the average of the w most recent observations. In this article, the use of one moving average control chart to monitor both process mean and variability. This new moving average chart is efficient in detecting both increases and decreases in mean and/or variability.  相似文献   

13.
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts are potentially powerful statistical process monitoring tools because of their excellent speed in detecting small to moderate persistent process shifts. Recently, synthetic EWMA (SynEWMA) and synthetic CUSUM (SynCUSUM) control charts have been proposed based on simple random sampling (SRS) by integrating the EWMA and CUSUM control charts with the conforming run length control chart, respectively. These synthetic control charts provide overall superior detection over a range of mean shift sizes. In this article, we propose new SynEWMA and SynCUSUM control charts based on ranked set sampling (RSS) and median RSS (MRSS) schemes, named SynEWMA‐RSS and SynEWMA‐MRSS charts, respectively, for monitoring the process mean. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed control charts. The run length performances of these control charts are compared with their existing powerful counterparts based on SRS, RSS and MRSS schemes. It turns out that the proposed charts perform uniformly better than the Shewhart, optimal synthetic, optimal EWMA, optimal CUSUM, near‐optimal SynEWMA, near‐optimal SynCUSUM control charts based on SRS, and combined Shewhart‐EWMA control charts based on RSS and MRSS schemes. A similar trend is observed when constructing the proposed control charts based on imperfect RSS schemes. An application to a real data is also provided to demonstrate the implementations of the proposed SynEWMA and SynCUSUM control charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we propose control charts to monitor the Weibull shape parameter β under type II (failure) censoring. This chart scheme is based on the sample ranges of smallest extreme value distributions derived from Weibull processes. We suggest one‐sided (high‐side or low‐side) and two‐sided charts, which are unbiased with respect to the average run length (ARL). The control limits for all types of charts depend on the sample size, the number of failures c under type II censoring, the desired stable‐process ARL, and the stable‐process value of β. This article also considers sample size requirements for phase I in retrospective charts. We investigate the effect of c on the out‐of‐control ARL. We discuss a simple approach to choosing c by cost minimization. The proposed schemes are then applied to data on the breaking strengths of carbon fibers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Control plans consisting of a group of moving averages (GMA plans) of various sizes are proposed for monitoring processes. Since moving averages of different sizes retain several levels of memory of past observations, these plans have good average run length (ARL) properties over a range of location shifts. The ARLs of GMA plans are compared with the conventional cumulative sum and the exponentially weighted moving average procedures.  相似文献   

17.
Exponentially weighted moving average (EWMA) quality control schemes have been recognized as a potentially powerful process monitoring tool because of their superior speed in detecting small to moderate shifts in the underlying process parameters. In quality control literature, there exist several EWMA charts that are based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. Recently, a mixed RSS (MxRSS) scheme has been introduced, which encompasses both SRS and RSS schemes, and is a cost‐effective alternative to the RSS scheme. In this paper, we propose new EWMA control charts for efficiently monitoring the process mean based on MxRSS and imperfect MxRSS (IMxRSS) schemes, named EWMA–MxRSS and EWMA–IMxRSS charts, respectively. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed EWMA charts. The run length performances of the suggested EWMA charts are compared with the classical EWMA chart based on SRS (EWMA–SRS). It turns out that both EWMA–MxRSS and EWMA–IMxRSS charts perform uniformly better than the EWMA–SRS chart when detecting all different shifts in the process mean. An application to a real data set is provided as an illustration of the design and implementation of the proposed EWMA chart. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
In this article a new control chart which enables a simultaneous monitoring of both the process mean and process variance of a multivariate data will be proposed. A thorough discussion in identifying whether the process mean or variability shifts is also given. Simulation studies will be performed to study the performance of the new chart by means of its average run length (ARL) profiles. Numerous examples are also given to show how the new chart is put to work in real situations.  相似文献   

19.
A single control chart is very famous to control assignable causes that shift the process because of variations in parameters (e.g., location and dispersion). Simultaneous monitoring of processes is another popular approach used for the bilateral processes. In this study, we have proposed the mixed control charts for simultaneously monitoring of process location and dispersion parameters. We have used the idea of mixed exponential weighted moving average and cumulative sum charts and designed the charting structures for simultaneous monitoring. The proposals are compared with several existing counterparts. The comparisons reveal numerous advantages of the proposed charts over the other existing scheme. The practical application of the proposed charts is also highlighted using an illustrative example based on a real dataset. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号