首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper develops two distributed finite‐time fault‐tolerant control algorithms for attitude synchronization of multiple spacecraft with a dynamic virtual leader in the presence of modeling uncertainties, external disturbances, and actuator faults. The leader gives commands only to a subset of the followers, and the communication flow between followers is directed. By employing a novel distributed nonsingular fast terminal sliding mode and adaptive mechanism, a distributed finite‐time fault‐tolerant control law is proposed to guarantee all the follower spacecraft that finite‐time track a dynamic virtual leader. Then utilizing three distributed finite‐time sliding mode estimators, an estimator‐based distributed finite‐time fault‐tolerant control law is proposed using only the followers' estimates of the virtual leader. Both of them do not require online identification of the actuator faults and provide robustness, finite‐time convergence, fault‐tolerant, disturbance rejection, and high control precision. Finally, numerical simulations are presented to evaluate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
This paper is concerned with the fixed‐time coordinated tracking problem for a class of nonlinear multi‐agent systems under detail‐balanced directed communication graphs. Different from conventional finite‐time coordinated tracking strategies, the fixed‐time approach developed in this paper guarantees that a settling time bound is prescribed without dependence on initial states of agents. First, for the case of a single leader, a distributed protocol based on fixed‐time stability techniques is proposed for each follower to accomplish the consensus tracking in a fixed time. Second, in the presence of multiple leaders, a new distributed protocol is proposed such that states of followers converge to the dynamic convex hull spanned by those of leaders in a fixed time. In addition, for a class of linear multi‐agent systems, sufficient conditions that guarantee the fixed‐time coordinated tracking are provided. Finally, numerical simulations are given to demonstrate the effectiveness of the theoretical results.  相似文献   

3.
This paper considers finite‐time formation control problem for a group of nonholonomic mobile robots. The desired formation trajectory is represented by a virtual dynamic leader whose states are available to only a subset of the followers and the followers have only local interaction. First of all, a continuous distributed finite‐time observer is proposed for each follower to estimate the leader's states in a finite time. Then, a continuous distributed cooperative finite‐time tracking control law is designed for each mobile robot. Rigorous proof shows that the group of mobile robots converge to the desired geometric formation pattern in finite time. At the same time, all the robots can track the desired formation trajectory in finite time. Simulation example illustrates the effectiveness of our method. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
This paper investigates finite‐time formation tracking control problem for multiple quadrotors with external disturbance. The states of the virtual leader are not available to all the followers and the network topology is described by a directed graph. The model of each quadrotor is divided into position subsystem and attitude subsystem. Firstly, novel distributed finite‐time state observers are designed to estimate the relative state errors between followers and the virtual leader. Secondly, the values of these observers are used to design controllers that achieve finite‐time robust coordinated tracking in the position subsystem. Thirdly, the terminal sliding mode disturbance observers and finite‐time attitude tracking controllers are proposed, respectively, in the attitude subsystem to estimate the external disturbance and achieve attitude tracking control. The finite‐time stability analysis of the control algorithms is carried out using the Lyapunov theory and the homogeneous technique. Finally, the efficiency of the proposed algorithm is illustrated by numerical simulations.  相似文献   

5.
The distributed tracking control for multiple Euler‐Lagrange systems with a dynamic leader is investigated in this article via the event‐triggered approach. Only a portion of followers have access to the leader, and the communication topology among all agents is directed that contains a directed spanning tree rooted at the leader. The case that the leader's generalized velocity is constant is first considered, and a distributed event‐based control law is developed by using a velocity estimator. When the leader's generalized velocity is time‐varying, novel distributed continuous estimators are proposed to avoid the undesirable chattering effect while guaranteeing that the estimate errors converge to zeros. With the designed distributed estimators, another distributed event‐based control protocol is provided. Controller update frequency and resource consumption in our work can be reduced by applying the aforementioned two distributed control laws, and the tracking errors can converge to zeros. In addition, it is rigorously proved that no agent exhibits Zeno behavior. Finally, the effectiveness of the proposed distributed event‐based control laws is elucidated by a number of simulation examples.  相似文献   

6.
The robust semiglobal swarm tracking problem of N coupled harmonic oscillators and 1 actual leader with input saturation and external disturbance on a directed communication topology is considered, in which the N coupled harmonic oscillators are referred to followers. First, the low‐and‐high gain feedback technique is introduced to construct a relative state‐dependent control algorithm. Then, an observer‐based control algorithm is designed based on the low‐and‐high gain feedback technique and the high‐gain observer design methodology. Sufficient conditions are derived to guarantee robust semiglobal swarm tracking for state‐feedback control and output‐feedback control, respectively. Numerical simulations are finally provided to verify the theoretic results.  相似文献   

7.
This paper investigates the distributed finite‐time tracking problem of networked agents with multiple Euler–Lagrange dynamics. To achieve finite‐time tracking, a distributed finite‐time protocol is first proposed on the basis of both relative position and relative velocity measurements. By using tools from homogeneous theory, it is theoretically shown that the proposed protocol can guarantee finite‐time tracking in the presence of control input constraints. On the basis of the state feedback analysis and with the aid of second‐order sliding‐mode observer approach, a new class of finite‐time tracking protocols based only on the relative position measurements is developed and employed. It is proved that the multiple agents equipped with the designed protocols can track the target location in finite time. Furthermore, a decentralized finite‐time protocol based on a distributed estimator is proposed to solve the finite‐time tracking problems with a dynamic leader. The effectiveness of the theoretical results is finally illustrated by numerical simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This paper investigates the consensus tracking problem for nonlinear multi-agent systems with a time-varying reference state. The consensus reference is taken as a virtual leader, whose output is only its position information that is available to only a subset of a group of followers. The dynamics of each follower consists of two terms: nonlinear inherent dynamics and a simple communication protocol relying only on the position of its neighbours. In this paper, the consensus tracking problem is respectively considered under fixed and switching communication topologies. Some corresponding sufficient conditions are obtained to guarantee the states of followers can converge to the state of the virtual leader in finite time. Rigorous proofs are given by using graph theory, matrix theory, and Lyapunov theory. Simulations are presented to illustrate the theoretical analysis.  相似文献   

9.
This paper considers the consensus tracking control problem for general linear multi‐agent systems with unknown dynamics in both the leader and all followers. Based on parameterizations of the unknown dynamics of all agents, two decentralized adaptive consensus tracking protocols, respectively, with dynamic and static coupling gains, are proposed to guarantee that the states of all followers converge to the state of the leader. Furthermore, this result is extended to the robust adaptive consensus tracking problem in which there exist parameter uncertainties and Lipschitz‐type disturbances in the network. It is also shown that the parameter estimation errors converge to zero based on contradiction method and Lyapunov function approach. Finally, a simulation example is provided to illustrate the theoretical results. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
基于带有非线性动态的二阶多智能体系统,研究了在有动态领导者条件下的跟踪一致性问题。假设跟随者只能获取邻居智能体的相对状态信息,只有一部分跟随者可以获得领导者的位置和速度信息,领导者的控制输入非零且不被任何一个跟随者可知。在通信拓扑为无向连通图的条件下,为了避免全局信息的不确定性,设计了分布式自适应控制协议。将系统的一致性问题转化为误差系统的一致性问题,通过Lyapunov稳定性理论和矩阵理论分析得到了该协议使系统达到一致的充分条件。最后用仿真例子证明了设计方法的有效性。  相似文献   

11.
This paper is concerned with the problem of fixed‐time consensus tracking control for a class of second‐order multiagent systems under an undirected communication graph. A distributed output‐feedback fixed‐time consensus tracking control scheme is proposed to make the states of all individual agents simultaneously track a time‐varying reference state even when the reference state is available only to a subset of the group members and only output measurements are available for feedback. Homogeneous Lyapunov function and homogeneity property are employed to show that the control scheme can guarantee the consensus tracking errors converging the origin in finite time which is bounded by a fixed constant independent of initial conditions. Numerical simulations are carried out to demonstrate the effectiveness of the proposed control law.  相似文献   

12.
This paper addresses the distributed output feedback tracking control problem for multi-agent systems with higher order nonlinear non-strict-feedback dynamics and directed communication graphs. The existing works usually design a distributed consensus controller using all the states of each agent, which are often immeasurable, especially in nonlinear systems. In this paper, based only on the relative output between itself and its neighbours, a distributed adaptive consensus control law is proposed for each agent using the backstepping technique and approximation technique of Fourier series (FS) to solve the output feedback tracking control problem of multi-agent systems. The FS structure is taken not only for tracking the unknown nonlinear dynamics but also the unknown derivatives of virtual controllers in the controller design procedure, which can therefore prevent virtual controllers from containing uncertain terms. The projection algorithm is applied to ensure that the estimated parameters remain in some known bounded sets. Lyapunov stability analysis shows that the proposed control law can guarantee that the output of each agent synchronises to the leader with bounded residual errors and that all the signals in the closed-loop system are uniformly ultimately bounded. Simulation results have verified the performance and feasibility of the proposed distributed adaptive control strategy.  相似文献   

13.
This paper studies finite‐time coordinated tracking problem for multiple double integrator systems with a time‐varying leader's velocity and bounded external disturbances. We consider the dynamic feedback designs for two different cases. In the first case, the velocities of the followers and the leader are assumed to be unavailable, and the communication topology is assumed to be undirected and fixed. In the second case, the velocities of the followers and the leader are assumed to be available, and the communication topology is assumed to be directed and switching. Distributed finite‐time observers are designed, respectively, to obtain the velocity information in the first case and the relative state information in the second case. The states of these observers are then used to design control inputs that achieve finite time robust coordinated tracking of multiple double integrator systems in the presence of bounded disturbances for these two cases. Simulation results are provided to validate the effectiveness of these theoretical results. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
有向图中网络Euler-Lagrange系统的自适应协调跟踪   总被引:4,自引:1,他引:3  
基于一致性理论, 在有向图中研究网络 Euler-Lagrange 系统的协调跟踪控制. 所有跟随智能体的动力学模型均为 Euler-Lagrange 方程. 在仅有部分跟随智能体能获取领航智能体信息的情形下, 同时考虑系统模型的参数不确定性, 设计分布式自适应控制律实现所有跟随智能体对领航智能体的跟踪. 针对领航智能体的运动状态, 考虑以下两种情形: 1) 领航智能体为固定点; 2) 领航智能体为动态点. 对第一种情形, 设计的控制律使得所有跟随智能体渐近交会于固定点; 对第二种情形, 首先对每个跟随智能体设计分布式连续估计器, 然后提出了分布式自适应控制律. 当每个跟随智能体均能获取领航智能体的加速度信息时, 设计的控制律能实现对领航智能体的渐近跟踪, 当跟随智能体不能获取领航智能体的加速度信息时, 跟踪误差是有界的. 最后通过仿真分析验证设计的控制算法是合理有效的.  相似文献   

15.
In this article, the problem of event‐triggered‐based fixed‐time sliding mode cooperative control is addressed for a class of leader‐follower multiagent networks with bounded perturbation. First, a terminal integral sliding mode manifold with fast convergent speed is designed. Then, a distributed consensus tracking control strategy based on event‐triggered and sliding mode control is developed that guarantees the multiagent networks achieve consensus within a fixed time which is independent of initial states of agents in comparison with the finite‐time convergence. Furthermore, the update frequency of control law can be considerably reduced and Zeno behavior can be removed by utilizing the proposed event‐triggered control algorithm. Simulation examples are used to show the effectiveness of the new control protocol.  相似文献   

16.
This paper investigates the joint effects of agent dynamic and network topology on the consensusability of linear discrete‐time multi‐agent systems via relative output feedback. An observer‐based distributed control protocol is proposed. A necessary and sufficient condition for consensusability under this control protocol is given, which explicitly reveals how the intrinsic entropy rate of the agent dynamic and the eigenratio of the undirected communication graph affect consensusability. As a special case, multi‐agent systems with discrete‐time double integrator dynamics are discussed where a simple control protocol directly using two‐step relative position feedback is provided to reach a consensus. Finally, the result is extended to solve the formation and formation‐based tracking problems. The theoretical results are illustrated by simulations. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This paper addresses the robust formation control problem of multiple rigid bodies whose kinematics and dynamics evolve on the Lie group SE(3). First, it is assumed that all followers have access to the state information of a virtual leader. Then, a novel adaptive super‐twisting sliding mode control with an intrinsic proportional‐integral‐derivative sliding surface is proposed for the formation control problem of multiagent system using a virtual structure (VS) approach. The advantages of this control scheme are twofold: elimination of the chattering phenomenon without affecting the control performance and no requirement of prior knowledge about the upper bound of uncertainty/disturbance due to adaptive‐tuning law. Since the VS method is suffering from the disadvantages of centralized control, in the second step, considering a network as an undirected connected graph, we assume that only a few agents have access to the state information of the leader. Afterward, using the gradient of modified error function, a distributed adaptive velocity‐free consensus‐based formation control law is proposed where reduced‐order observers are introduced to remove the requirements of velocity measurements. Furthermore, to relax the requirement that all agents have access to the states of the leader, a distributed finite‐time super‐twisting sliding mode estimator is proposed to obtain an accurate estimation of the leader's states in a finite time for each agent. In both steps, the proposed control schemes are directly developed on the Lie group SE(3) to avoid singularity and ambiguities associated with the attitude representations. Numerical simulation results illustrated the effectiveness of the proposed control schemes.  相似文献   

18.
ABSTRACT

This paper investigates the leader-following scaled consensus problem of second-order multi-agent systems under directed topologies. Three novel leader-following scaled consensus protocols are designed. First, a novel scaled consensus protocol is proposed. It can guarantee the velocity of each agent in one sub-group exactly follow that of a leader, and the follower agents achieve scaled consensus. Second, another proposed protocol enables the agents' positions and velocities of one sub-group accurately track those of a leader, and the follower agents achieve scaled consensus. Third, consider the case where the leader's states available to one or multiple followers and the leader travels with a varying velocity, a novel scaled consensus tracking protocol is proposed. Sufficient and necessary conditions are obtained to guarantee scaled consensus tracking for the three cases,respectively. Finally, simulation examples are made to verify the effectiveness of the theoretical results.  相似文献   

19.
In this paper, the consensus tracking problem with unknown dynamics in the leader for the linear multi-agent systems is addressed. Based on the relative output information among the agents, decentralised adaptive consensus protocols with static coupling gains are designed to guarantee that the consensus tracking errors converge to a small neighbourhood around the origin and all the signals in the closed-loop dynamics are uniformly ultimately bounded. Moreover, the result is extended to the case with dynamic coupling gains which are independent of the eigenvalues of the Laplacian matrix. Both of the protocols with static and dynamic coupling gains are designed by using the relative outputs, which are more practical than the state-feedback ones. Finally, the theoretical results are verified through an example.  相似文献   

20.
This paper investigates the distributed consensus tracking problem for multi-agent systems with Lipschitz-type dynamics under a reference leader. It is assumed that the leader state information is only available to a subset of followers, while the bounded reference input of the leader’s is unavailable to any follower. To achieve consensus tracking, a class of discontinuous protocols based on the relative information between the neighbouring agents are proposed. Furthermore, as extensions of the former result, the robust and adaptive consensus tracking problems are studied for the case where there exist parameter uncertainties and external disturbances in the network. Finally, the effectiveness of the theoretical result is demonstrated through a network of single-link manipulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号