首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shell‐crosslinked core–shell nanoparticles (SCCSNs) were prepared via miniemulsion polymerization of styrene in the presence of silane‐modified inorganic silica. The polystyrene (PS) shell of 58.6% in weight fraction was crosslinked using divinylbenzene. SCCSNs were spherical with a diameter distribution from 32 to 98 nm determined by dynamic light scattering. Dynamic rheology of SCCSNs suspended in PS/toluene solution was compared with that of suspensions of naked silica. The critical strain for onset of rheological nonlinearity was independent of SCCSN concentration above a concentration threshold, which differs from the silica suspensions. Linear dynamic rheological investigation revealed that SCCSN suspensions with a PS volume fraction of 20% were fluid‐like at low particle concentrations while suspensions containing 4.2 vol% SCCSNs formed a gel‐like structure. On the contrary, the silica suspensions with 20.0 vol% PS underwent a fluid‐to‐solid‐like transition with increasing silica concentration. Reasons for the different rheological behaviors of the naked silica and SCCSN suspensions are discussed. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
A study of hygrothermal aging in terms of the kinetics of moisture absorption by poly(butylene terephthalate) (PBT) and styrene‐acrylonitrile/acrylate based core–shell rubber (CSR) toughened PBT (PBT‐CSR) was undertaken. The diffusion of water into the PBT compounds with various CSR contents was investigated by immersion of specimens in water at temperatures between 30 and 90°C. It was observed that the equilibrium moisture content and the diffusion coefficient of the PBT both increased with increasing CSR content. The fracture behaviors of the PBT and PBT‐CSR were investigated. The focus of investigation was on the effect of an internal parameter (rubber content) and external parameters (testing temperature, deformation rates, and hygrothermal aging) on the fracture behavior of these materials. The fracture response of the various materials was evaluated by the fracture toughness and energy measured on static‐loaded compact tension specimens. The tensile and fracture behavior of PBT and PBT‐CSR was affected by both the internal and external parameters. On its own the CSR impact modifier failed to improve the toughness of PBT at either high testing speed or subambient temperature (−40°C). Based on the dynamic mechanical analysis study, the CSR is believed to behave as a rigid particulate filler in the PBT that consequently reduces the ductility of the PBT. All the materials tested showed poor retention of the tensile and fracture properties upon exposure to hygrothermal aging at 90°C, and these properties could not be restored by subsequent drying. This was attributed to severe hydrolytic degradation of the PBT that caused permanent damage to the materials. The failure modes of PBT and PBT‐CSR were assessed by fractographic studies in a scanning electron microscope. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2470–2481, 1999  相似文献   

3.
Fluorinated polystyrene‐acrylate (PSA) latex nanoparticles with core–shell structure were synthesised by two‐stage seeded emulsion polymerisation method in the presence of reactive emulsifier DNS‐86. Diallyl phthalate (DAP) and Vinyltriethoxysilicone (VTES) were used as crosslinking agent to immobilise the fluorinated copolymer on the surface of the latex film. Fourier transform infrared spectroscopy (FTIR) spectra show that fluorine and siloxane monomers were effectively involved in the emulsion copolymerisation. Transmission electron microscope (TEM) observation shows that the prepared emulsion particles had a core–shell structure with fluorinated copolymer in the shell. X‐ray photoelectron spectroscopy (XPS) analysis reveals that fluorine atom has the tendency of migrating to the film–air interface and the incorporation of VTES helps the migration of fluorine atom towards the film–air interface. Water contact angle (WCA) test proved that DAP and VTES as crosslinking agent can immobilise the fluorinated copolymer on the surface of the latex films. © 2011 Canadian Society for Chemical Engineering  相似文献   

4.
Poly(urethane acrylate) (PUA)/poly(methylmethacrylate) (PMMA) core–shell composite particles were prepared by two-stage emulsion polymerization. The sizes of composite particles could be varied from 25 to 210 nm by introducing polyoxyethylene (POE) groups to the urethane acrylate molecular backbone. Core–shell morphology was identified by investigating the polarity of the surface of the core and shell polymer particles and by measuring the contact angle of the composite particles. A composite particle prepared with relatively small particles (about 20 nm) did not show the core/shell morphology, because the high polar surface of the core polymer particle and the low-stage ratio of the core to the shell cause the formation of a core/shell two-stage latex to be more thermodynamically unstable. The fracture toughness of rubber-toughened PMMA containing PUA/PMMA composite particles increased as the particle sizes decreased and the shell thickness of the composite particles increased. In particular, when the average size of the composite particle was about 43 nm and the stage ratio was 50/50, the fracture toughness of the rubber-toughened PMMA increased more than three times compared with that of pure PMMA. Furthermore, the transparency of toughened PMMA could be maintained up to 91% in the visible spectra range. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2291–2302, 1998  相似文献   

5.
Core–shell poly(acrylic acid)/polystyrene/SiO2 (PAA/PS/SiO2) hybrid microspheres were prepared by dispersion polymerization with three stages in ethanol and ethyl acetate mixture medium. Using vinyltriethoxysilane (VTEOS) as silane agent, functional silica particles structured vinyl groups on surfaces were prepared by hydrolysis and polycondensation of tetraethoxysilane and VTEOS in core stage. Then, the silica particles were used as seeds to copolymerize with styrene and acrylic acid sequentially in shell stage I and stage II to form PAA/PS/SiO2 hybrid microspheres. Transmission electron microscope results show that most PAA/PS/SiO2 hybrid microspheres are about 40 nm in diameter, and the silica cores are about 15 nm in diameter, which covered with a layer of PS about 7.5‐nm thick and a layer of PAA about 5‐nm thick. This core–shell structure is also conformed by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, and differential scanning calorimetry. FTIR results show that silica core, PS shell, and PAA outermost shell are bonded by covalents. In the core–shell PAA/PS/SiO2 hybrid microsphere, the silica core is rigidity, and the PAA outermost shell is polarity, while the PS layer may work as lubricant owning to its superior processing rheological property in polymer blending. These core–shell PAA/PS/SiO2 hybrid microspheres have potential as new materials for polar polymer modification. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1729–1733, 2006  相似文献   

6.
Nanometer scale particles of seed latex were successfully prepared by polymerization induced by gamma rays. By modification of the coupling agent 3‐methacryloxylpropyltrimethoxylsilane (MPS) at the surface of polystyrene (PSt) particles, polydimethylsiloxane (PDMS) was introduced outside the PSt particles and composite latex particles with a core–shell (PSt–PDMS) structure were successfully prepared. Because of the chemical bond linkage between the core and the shell, such a structure is stable. Direct evidence of the core–shell structure was observed by transmission electron microscopy (TEM). In addition the chemical bond linkage was confirmed by Fourier‐transfer infrared (FT‐IR) spectroscopy. An indirect proof of the core–shell structure was given by water absorption ratio determination of the different samples. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
Hyperbranched polyvinyl‐ and polymethylethoxysiloxanes were obtained for the first time by heterofunctional polycondensation of the corresponding organoethoxysilanols derived from relevant monosodium organodiethoxysilanolates. Synthesized structures were characterized using 29Si NMR, 1H NMR and infrared spectroscopies, gel permeation chromatography and elemental analysis. On the basis of the obtained hyperbranched polyorganoethoxysiloxanes, new ‘core–shell’ structured polyvinyl‐ and polymethylsilsesquioxanes with adjustable sizes, different crosslinking densities and variable chemical natures of the core–shell surroundings were prepared, investigated and characterized using 1H NMR and infrared spectroscopies, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry and elemental analysis. © 2015 Society of Chemical Industry  相似文献   

8.
Electrospinning of protein‐loaded fibers faces many challenges, e.g. burst release owing to segregation of the protein on the fiber surface, loss of activity due to electrospinning conditions, limitation of loading capacity etc. Core–shell electrospinning provides an effective way to electrospin fibers wherein the core can be loaded with bioactive molecules in friendly conditions of a compatible polymer solution, thereby protecting the molecules from the electrostatic field and organic solvent of shell solutions. The shell polymer, after the electrospinning, acts as a barrier to control the release of the loaded molecules. However, the limitation of loading capacity still remains due the prerequisite of using an additional polymer as additive to achieve the minimum viscosity of the core solution required for viscous drag by the shell solution being drawn by the electrostatic force. The work reported here aims to alleviate the need of a polymer additive by using aqueous protein solutions of very high concentration. High concentrations of protein solutions were successfully electrospun as the core of the protein–poly(lactide‐co‐glycolic acid) core–shell fibers. A partitioning effect was seen in the controlled release of hydrophilic proteins as they were retained in the aqueous core for longer times. Using lysozyme as a model protein, it was shown that the activity is significantly retained after electrospinning, compared with electrospinning in monolithic fibers. Moreover, the lysozyme activity was also comparable with the lysozyme released from core–shell fibers spun using poly(vinyl acetate) as additive in the core. Copyright © 2012 Society of Chemical Industry  相似文献   

9.
The multiphase morphology of high impact polypropylene (hiPP), which is a reactor blend of polypropylene (PP) with ethylene–propylene copolymer, was investigated by transmission electron microscopy, selected area electron diffraction, atomic force microscopy, and field‐emission scanning electron microscopy techniques in conjunction with an analysis of the hiPP composition and chain structure based on solvent fractionation, 13C‐NMR, and differential scanning calorimetry measurements. A multilayered core–shell structure of the dispersed phase of hiPP in solution‐cast films and the bulk was observed. The inner core was mainly composed of polyethylene (including its long blocks) together with part of PP, the intermediate layer was ethylene–propylene random copolymer, and the outer shell consisted of ethylene–propylene multiblock copolymers. The formation process and controlling factors of the multilayered core–shell structure are discussed. This kind of multiphase morphology of hiPP caused the material to possess both a high rigidity and high toughness. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
Polystyrene–poly(N,N‐diethylamino ethyl methacrylate) (PS–PDEAEMA) particles with a core–shell morphology were prepared by seeded emulsion polymerization. Poly(oxyethylene) (POE) (n = 15 and 30) nonyl phenol and sodium lauryl sulfate (SLS) were used as emulsifiers. These two emulsifiers were selected in order to study the effect of nonionic and ionic emulsifiers on the reaction because of the basic character of DEAEMA. The core–shell morphology was investigated independently in the presence of water‐soluble potassium persulfate (KPS) and of oil‐soluble azobisisobutyronitrile (AIBN). The morphologic structure of the particles was studied using scanning electron microscopy and transmission electron microscopy. The latex particles and the polymers were characterized by differential scanning analysis, thermogravimetric analysis, and gel permeation chromatography. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 1977–1985, 2000  相似文献   

11.
Fluorinated polyacrylate latices with core–shell structure were prepared by semi‐continuous emulsion polymerization, using a mixed emulsifier system composed of a reactive emulsifier and a small amount of anionic emulsifier. The conversion and chemical components of the final latices were studied by gravimetric methods and Fourier‐transform infrared (FTIR) spectrometry, respectively. The structure of the latex particles was determined by differential scanning calorimetry (DSC), transmission electron microscopy (TEM) and particle size analysis. The latex films exhibited a low surface energy and high water‐contact angles. The surface analysis from X‐ray photoelectron spectroscopy (XPS) revealed that the fluorinated components preferentially self‐organized at the film–air interface. From XPS depth profiling of the film, it was found that a gradient concentration of fluorine existed in the structure of the latex film from the film–air interface to the film–glass interface. Compared with the core–shell structure with a fluorinated core, the core–shell structure with a fluorinated shell was more effective for modifying the properties of the latex films. Copyright © 2005 Society of Chemical Industry  相似文献   

12.
This article reports a new needleless emulsion electrospinning method for scale‐up fabrication of ultrathin core–shell polyacrylonitrile (PAN)/isophorone diisocyanate (IPDI) fibers. These core–shell fibers can be incorporated at the interfaces of polymer composites for interfacial toughening and self‐repairing due to polymerization of IPDI triggered by environmental moisture. The electrospinnable PAN/IPDI emulsion was prepared by blending PAN/N,N‐dimethylformamide and IPDI/N,N‐dimethylformamide solutions (with the solute mass fraction of 1 : 1). The electrospinning setup consisted of a pair of aligned metal wires as spinneret (positive electrode) to infuse the PAN/IPDI emulsion and a rotary metal disk as fiber collector (negative electrode). The formed ultrathin core–shell PAN/IPDI fibers were collected with the diameter in the range from 300 nm to 3 μm depending on the solution concentration and process parameters. Optical microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy were used to characterize the core–shell nanostructures. Dependencies of the fiber diameter on the PAN/IPDI concentration, wire spacing, and wire diameter were examined. Results show that needleless emulsion electrospinning provides a feasible low‐cost manufacturing technique for scalable, continuous fabrication of core–shell nanofibers for potential applications in self‐repairing composites, drug delivery, etc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40896.  相似文献   

13.
Core–shell microspheres made from glass beads as the core phase and polysulfone (PSf) as the shell phase can act as an absorbent in the separation process or a supporter for chemical reactions. Based on phase‐inversion principles, a two‐step sol–gel method was developed in this work in which ether was added first and H2O was added second to a PSf‐containing dimethyformamide (DMF) solution to help PSf solidify on the surface of glass beads. The results from scanning electron microscopy, Fourier transform IR, and X‐ray photoelectron spectroscopy showed that a dense layer of PSf (thin to several microns) was coated on the glass beads and the core–shell microspheres were almost monodispersed. The utilization percentages of the glass beads and PSf were high as 100 and 80%, respectively. The thickness of the PSf membrane was calculated to be about 4.3 μm. To obtain well‐monodispersed microspheres, the practical volume ratio of ether to DMF was recommended to be larger than 4.5. The results suggested that the two‐step sol–gel method is a highly efficient process for preparation of glass bead/PSf core–shell microspheres. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 99: 3365–3369, 2006  相似文献   

14.
Different types of acrylic core–shell rubber particles with a poly(butyl acrylate) (PBA) core and a grafted poly(methyl methacrylate) (PMMA) shell were synthesized. The average size of acrylic core–shell latex particles ranged from 100 to 170 nm in diameter, having the core gel content in the range of 35–80%. The melt blending behavior of the poly(vinyl chloride) (PVC) and the acrylic core–shell rubber materials having different average particle sizes and gel contents was investigated in a batch mixing process. Although the torque curves showed that the particulate flow of the PVC in the blends was dominant, some differences were observed when the size and gel content of the particles varied. This behavior can be attributed to differences in the plasticizing effect and dispersion state of various types of core–shell rubber particles, which can vary the gelatin process of the PVC in the mixing tool. On the other hand, the highest toughening efficiency was obtained using core–shell rubber particles with the smallest particle size (i.e., 100 nm). The results showed that increasing the gel content of the core–shell impact modifiers with the same particle size improved the particle dispersion state in the PVC matrix. The toughening efficiency decreased for the blends containing 100 and 170 nm rubber particles as the gel content increased. Nevertheless, unexpected behavior was observed for the blends containing 140 nm rubber particles. It was found that a high level of toughness could be achieved if the acrylic core–shell rubber particles as small as 100 nm had a lower gel content. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
The current study establishes the unprecedented involvement in the evolution and production of novel core–shell nanocomposites composed of nanosized titanium dioxide and aniline‐o‐phenylenediamine copolymer. TiO2@copoly(aniline and o‐phenylenediamine) (TiO2@PANI‐o‐PDA) core–shell nanocomposites were chemically synthesized in a molar ratio of 5:1 of the particular monomers and several weights of nano‐TiO2 via oxidative copolymerization. The construction of the TiO2@PANI‐o‐PDA core–shell nanocomposites was ascertained from Fourier transform IR spectroscopy, UV–visible spectroscopy and XRD. A reasonable thermal behavior for the original copolymer and the TiO2@PANI‐o‐PDA core–shell nanocomposites was investigated. The bare PANI‐o‐PDA copolymer was thermally less stable than the TiO2@PANI‐o‐PDA nanocomposites. The core–shell feature of the nanocomposites was found to have core and shell sizes of 17 nm and 19–26 nm, respectively. In addition, it was found that the addition of a high ratio of TiO2 nanoparticles increases the electrical conductivity and consequently lowers the electrical resistivity of the TiO2@PANI‐o‐PDA core–shell nanocomposites. The hybrid photocatalysts exhibit a dramatic photocatalytic efficacy of methylene blue degradation under solar light irradiation. A plausible interpretation of the photocatalytic degradation results of methylene blue is also demonstrated. Our setup introduces a facile, inexpensive, unique and efficient technique for developing new core–shell nanomaterials with various required functionalities and colloidal stabilities. © 2018 Society of Chemical Industry  相似文献   

16.
A core–shell nanosilica (nano‐SiO2)/fluorinated acrylic copolymer latex, where nano‐SiO2 served as the core and a copolymer of butyl acrylate, methyl methacrylate, and 2,2,2‐trifluoroethyl methacrylate (TFEMA) served as the shell, was synthesized in this study by seed emulsion polymerization. The compatibility between the core and shell was enhanced by the introduction of vinyl trimethoxysilane on the surface of nano‐SiO2. The morphology and particle size of the nano‐SiO2/poly(methyl methacrylate–butyl acrylate–2,2,2‐trifluoroethyl methacrylate) [P(MMA–BA–TFEMA)] core–shell latex were characterized by transmission electron microscopy. The properties and surface energy of films formed by the nano‐SiO2/P(MMA–BA–TFEMA) latex were analyzed by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, scanning electron microscopy/energy‐dispersive X‐ray spectroscopy, and static contact angle measurement. The analyzed results indicate that the nano‐SiO2/P(MMA–BA–TFEMA) latex presented uniform spherical core–shell particles about 45 nm in diameter. Favorable characteristics in the latex film and the lowest surface energy were obtained with 30 wt % TFEMA; this was due to the optimal migration of fluorine to the surface during film formation. The mechanical properties of the films were significantly improved by 1.0–1.5 wt % modified nano‐SiO2. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

17.
Novel TiO2–Ag core–shell micro‐/nanowires (TiO2 shell coating on Ag core) have been successfully prepared via a solvent–thermal method. Energy dispersive spectroscopy and X‐ray diffraction analyses revealed that the micro‐/nanowires were composed of Ag, Ti and O elements, and Ag was face‐centered cubic whereas TiO2 was mainly amorphous. Interestingly, scanning electron microscopy (SEM) and transmission electron microscopy results showed that most of the TiO2 bristles were perpendicular to and uniformly studded on the surface of the Ag cores. Subsequently, TiO2–Ag/poly(arylene ether nitrile) (PEN) composite films were prepared via a solution‐casting method in order to investigate the effect of TiO2–Ag on the PEN matrix. SEM images showed that there was good interfacial adhesion between fillers and PEN matrix owing to the special bristle‐like structure. Thermal analysis results showed that the TiO2–Ag/PEN composite films possessed excellent thermal properties endowed by the PEN matrix. The dielectric constant of the composite films increased to 9.3 at 100 Hz when the TiO2–Ag loading reached 40 wt%. Rheology measurements revealed that the network formed by TiO2–Ag was sensitive to shear stress and nearly time independent. © 2013 Society of Chemical Industry  相似文献   

18.
Conductive polymer particles, polyaniline (PANI)‐coated poly(methyl methacrylate–butyl acrylate–acrylic acid) [P(MMA–BA–AA)] nanoparticles, were prepared. The P(MMA–BA–AA)/PANI core–shell complex particles were synthesized with a two‐step miniemulsion polymerization method with P(MMA–BA–AA) as the core and PANI as the shell. The first step was to prepare the P(MMA–BA–AA) latex particles as the core via miniemulsion polymerization and then to prepare the P(MMA–BA–AA)/PANI core–shell particles. The aniline monomer was added to the mixture of water and core nanoparticles. The aniline monomer could be attracted near the outer surface of the core particles. The polymerization of aniline was started under the action of ammonium persulfate (APS). The final product was the desired core–shell nanoparticles. The morphology of the P(MMA–BA–AA) and P(MMA–BA–AA)/PANI particles was characterized with transmission electron microscopy. The core–shell structure of the P(MMA–BA–AA)/PANI composites was further determined by Fourier transform spectroscopy and ultraviolet–visible measurements. The conductive flakes made from the core–shell latexes were prepared, and the electrical conductivities of the flakes were studied. The highest conductivity of the P(MMA–BA–AA)/PANI pellets was 2.05 S/cm. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

19.
A two-stage, multistep soapless emulsion polymerization was employed to prepare various sizes of reactive core–shell particles (CSPs) with butyl acrylate (BA) as the core and methyl methacrylate (MMA) copolymerizing with various concentrations of glycidyl methacrylate (GMA) as the shell. Ethylene glycol dimethacrylate (EGDMA) was used to crosslink either the core or shell. The number of epoxy groups in a particle of the prepared CSP measured by chemical titration was close to the calculated value based on the assumption that the added GMA participated in the entire polymerization unless it was higher than 29 mol %. Similar results were also found for their solid-state 13C-NMR spectroscopy. The MMA/GMA copolymerized and EGDMA-crosslinked shell of the CSP had a maximum glass transition temperature (Tg) of 140°C, which was decreased with the content of GMA at a rate of −1°C/mol %. However, the shell without crosslinking had a maximum Tg of 127°C, which decreased at a rate of −0.83°C/mol %. The Tg of the interphasial region between the core and shell was 65°C, which was invariant with the design variables. The Tg of the BA core was −43°C, but it could be increased to −35°C by crosslinking with EGDMA. The Tg values of the core and shell were also invariant with the size of the CSP. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2069–2078, 1998  相似文献   

20.
Core–shell structured particles, which comprise the rubbery core and glassy layers, were prepared by emulsifier‐free emulsion polymerization of poly(n‐butyl acrylate/methyl methacrylate)/polystyrene [P(n‐BA/MMA)/PS]. The particle diameter was about 0.22 μm, and the rubbery core was uncrosslinked and lightly crosslinked, respectively. The smaller core–shell structured particle–toughened PS blends were investigated in detail. The dynamic mechanical behavior and observation by scanning electron microscopy of the modified blend system with core–shell structured particles indicated good compatibility between PS and the particles, which is the necessary qualification for an effective toughening modifier. Notched‐impact strength and related mechanical properties were measured for further evaluation of the toughening efficiency. The notched‐impact strength of the toughened PS blends with uncrosslinked particles reached almost sixfold higher than that of the untoughened PS when 15 phr of the core–shell structured particles was added. For the crosslinked particles the toughening effect for PS was not obvious. The toughening mechanism for these smaller particles also is discussed in this article. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 1290–1297, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号