首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The toughness of a polypropylene (PP)/ethylene‐octene copolymer (EOC)/maleic anhydride‐grafted poly(ethylene‐co‐octene) (EOC‐g‐MA)/clay nanocomposite and blends of PP/EOC and PP/EOC/EOC‐g‐MA was investigated using Charpy impact and single‐edge‐notch tensile (SENT) tests. In order to understand the toughening mechanisms, impact fracture surfaces and damage zones of single‐edge‐notch samples were studied with scanning electron microscopy and transmission optical microscopy, respectively. It was observed that the addition of EOC‐g‐MA to PP/EOC blend led to improvements in both impact strength and fracture energy of SENT tests because of the enhanced compatibility of the blend, which resulted from reduced EOC particle size and improved interfacial adhesion, and the decreased crystallinity of PP. The incorporation of clay to PP/EOC/EOC‐g‐MA blend caused a further increase of the toughness, owing to the greater decrease in the size of elastomer particles, to the presence of clay tactoids inside the elastomer phase and presumably to debonding of clay layers during the low‐speed SENT tests. The results of microscopic observations showed that the main toughening mechanism in PP/EOC/EOC‐g‐MA blend and PP/EOC/EOC‐g‐MA/clay nanocomposite is crazing. Copyright © 2012 Society of Chemical Industry  相似文献   

2.
Ethylene‐octene random copolymer (EOC) is one of the most commonly employed elastomers for PP, and as such its rubber toughening efficiency has been extensively studied. However, most existing studies employ EOC containing an octene comonomer of about 8 mol %. Therefore, in this study, we investigated the effect of EOC octene comonomer content on the morphology and thermal and mechanical properties of PP‐ethylene random copolymer (PP‐CP)/EOC (80/20 wt %/wt %) blends. It was clearly shown that the properties of the blends are significantly affected by the octene content. The rubber particle size of the blends decreased as the octene content in the EOC was increased, which was a consequence of the reduced interfacial tension between PP‐CP and EOC. Impact strength of the blends as a function of octene content displayed a brittle‐ductile transition. The tensile yield strength and modulus of the PP‐CP/EOC blends were decreased by addition of EOC, owing to incorporation of the soft EOC into the hard PP‐CP. The tensile yield strength and modulus of PP‐CP/EOC blends decreased monotonically with the octene content in the EOC. The melting temperature as well as the crystallinity of the PP‐CP phase were not affected significantly by the addition of EOC whereas a notable shift in melting and crystallization temperatures was observed for the EOC phase. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1133–1139, 2007  相似文献   

3.
Tensile behavior and impact strength of poly(butylene terephthlate) (PBT)/styrene‐ethylene‐butylene‐styrene (SEBS) copolymer blends were studied at SEBS volume fraction 0–0.38. Tensile modulus and strength decreased, whereas breaking elongation increased with SEBS content. Predictive models are used to evaluate the tensile properties. Strength properties were dependent on the crystallinity of PBT and phase adhesion. The normalized notched Izod impact strength increased with the SEBS content; at Φd = 0.38, the impact strength enhanced to five times that of PBT. Scanning electron microscopy was used to examine phase morphology. Concentration and interparticle distance of the dispersed phase influenced impact toughening. In the presence of maleic anhydride‐grafted SEBS (SEBS‐g‐MAH), the tensile modulus and strength decreased significantly, while normalized relative notched Izod impact strength enhanced to 7.5 times because of enhanced interphase adhesion. POLYM. ENG. SCI., 53:2242–2253, 2013. © 2013 Society of Plastics Engineers  相似文献   

4.
Shear viscosity and melt fracture of a metallocene poly(ethylene‐octene) were studied using a capillary rheometer and dies with different lengths. The true wall shear stresses determined at zero die length showed a dip at high shear rates. The shear viscosity was derived from the true wall shear stress. With increasing shear rates, the extrudate staged from smooth to three types of melt fracture with regular patterns, and then turned into irregular shapes. Three types of regular melt fractures—sharkskin, helix, and spiral (in sequence)—were observed with an increase of the shear rates. The wavelength of the regular melt fracture was measured from extrudates, and the corresponding frequency was calculated. The frequency increased at elevated melt temperatures. Both shear viscosity and frequency at different temperatures correlated well by using the time–temperature Williams–Landel–Ferry (WLF) superposition. Additionally, it was found that the frequency decreased slightly for a longer die but it increased when the shear rate went up. Three frequency functions were associated with three melt fracture patterns, respectively. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 903–911, 2005  相似文献   

5.
Poly(butylene terephthalate) (PBT)/poly(ethylene‐octene) (PEO) blends containing 1.0 wt% epoxy and from 0 to 30 wt% PEO were obtained by extrusion and injection molding. The blends were composed of two pure amorphous phases. The observed torque increases showed that epoxy reacted with PBT, leading to a fine and homogeneous morphology up to 15 wt% PEO content, which appeared larger and more heterogeneous at higher PEO contents. Toughness values fifteen‐fold those of pure PBT were obtained with only 13 wt% PEO. The tensile properties, including ductility, decreased with increasing PEO content, indicating that the adhesion level necessary for high ductility is higher than that necessary for super‐toughness. The inter‐particle distance (τ) was the main parameter that controlled toughness. The comparison of the results of this work with those of the same PBT/PEO blends with two different compatibilizers provides additional strong evidence of the adhesion at the interphase as the main parameter that controls the critical τ in these modified thermoplastic/rubber blends.  相似文献   

6.
The Izod impact strength of maleic anhydride‐grafted acrylonitrile butadiene styrene (MA‐g‐ABS) copolymer has been improved by the use of rubbery poly(ethylene‐co‐vinyl acetate) (EVA). The MA‐g‐ABS is prepared by an internal mixer using dicumyl peroxide as free radical initiator, and the grafting degree was determined using back‐titration method. The amount of EVA is optimized by evaluating the Izod impact strength, tensile, and flexural properties of the samples. Addition of 6% EVA into MA‐g‐ABS system improved the Izod impact strength and tensile strength by 18% and 35%, respectively. The miscibility of EVA in ABS and MA‐g‐ABS matrices has been observed using differential scanning calorimetry and scanning electron microscopy techniques. The enhanced adhesion property exhibited by MA‐g‐ABS/EVA systems promises it as a good candidate for thermoplastic coating applications on aluminum substrates. J. VINYL ADDIT. TECHNOL., 25:287–295, 2019. © 2018 Society of Plastics Engineers  相似文献   

7.
The comparison of the mechanical properties between poly(propylene)/ethylene‐propylene‐diene monomer elastomer (PP/EPDM) and poly(propylene)/maleic anhydride‐g‐ethylene‐propylene‐diene monomer [PP/MEPDM (MAH‐g‐EPDM)] showed that the latter blend has noticeably higher Izod impact strength but lower Young's modulus than the former one. Phase morphology of the two blends was examined by dynamic mechanical thermal analysis, indicating that the miscibility of PP/MEPDM was inferior to PP/EPDM. The poor miscibility of PP/MEPDM degrades the nucleation effectiveness of the elastomer on PP. The observations of the impact fracture mode of the two blends and the dispersion state of the elastomers, determined by scanning electron microscopy, showed that PP/EPDM fractured in a brittle mode, whereas PP/MEPDM in a ductile one, and that a finer dispersion of MEPDM was found in the blend PP/MEPDM. These observations indicate that the difference in the dispersion state of elastomer between PP/EPDM and PP/MEPDM results in different fracture modes, and thereby affects the toughness of the two blends. The finer dispersion of MEPDM in the blend of PP/MEPDM was attributed to the part cross‐linking of MEPDM resulting from the grafting reaction of EPDM with maleic anhydride (MAH) in the presence of dicumyl peroxide (DCP). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2486–2491, 2002  相似文献   

8.
The effect of poly(ethylene‐alt‐maleic anhydride) (EMA), an additive used in nickel powder precipitation, has been studied using sodium hypophosphite as a reducing agent. Reduction experiments were conducted using a 10 L stainless steel batch reactor. The effect of EMA was investigated by studying the evolution of the particle size distribution (PSD) and its derived moments, specific surface area, rate of reduction, pH–redox potential and elemental composition of the powder product. EMA has been found to act as a reduction catalyst and anti‐agglomerating agent. The major particulate processes identified were size dependent aggregation, molecular growth and breakage. © 2012 Canadian Society for Chemical Engineering  相似文献   

9.
Solvothermal process was successfully developed to graft dibutylmaleate (DBM) onto poly(ethylene‐co‐1‐octene) (POE) with dicumyl peroxide (DCP) as free radical‐initiator. FTIR spectra demonstrate that DBM is successfully grafted onto the backbone of POE by this novel method. The influences of DBM content, DCP concentration, POE concentration, reaction temperature and reaction time on the grafting copolymerization have been investigated in detail through grafting degree (GD). It is worthy to indicate that high grafting degree (above 15%) can be achieved through the one‐pot way when the graft reaction is carried out in 40 mL toluene at 150°C for 5 h with 1.6 g DBM, 6–8 g POE and 0.35 g DCP. This developed solvothermal process is becoming an effective way to prepare POE‐g‐DBM graft copolymers, and can be extended to other systems. In addition, TGA results show that the thermal properties of POE are enhanced after the grafting reaction. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

10.
In the past 3 decades, there has been great advancement in the preparation of microcellular thermoplastic polymer foams. However, little attention has been paid to thermoplastic elastomers. In this study, microcellular poly(ethylene‐co‐octene) (PEOc) rubber foams with a cell density of 2.9 × 1010 cells/cm3 and a cell size of 1.9 μm were successfully prepared with carbon dioxide as the physical blowing agent with a batch foaming process. The microcellular PEOc foams exhibited a well‐defined, closed‐cell structure, a uniform cell size distribution, and the formation of unfoamed skin at low foaming temperatures. Their difference from thermoplastic foam was from obvious volume recovery in the atmosphere because of the elasticity of the polymer matrix. We investigated the effect of the molecular weight on the cell growth process by changing the foaming conditions, and two important effect factors on the cell growth, that is, the polymer matrix modulus/melt viscoelastic properties and gas diffusion coefficient, were assessed. With increasing molecular weight, the matrix modulus and melt viscosity tended to increase, whereas the gas solubility and diffusion coefficient decreased. The increase in the matrix modulus and melt viscosity tended to decrease the cell size and stabilize the cell structure at high foaming temperatures, whereas the increase in the gas diffusion coefficient facilitated cell growth at the beginning and limited cell growth because most of the gas diffused out of the polymer matrix during the long foaming times or at high foaming temperatures. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

11.
On purpose to examine the effect of branch length on the miscibility of polyolefin blends, miscibility behavior of linear polyethylene/poly(ethylene‐co‐1‐octene) blend was studied and compared to that of linear polyethylene/poly(ethylene‐co‐1‐butene) blend. Miscibility of the blend was determined by observing the morphology quenched from the melt, and by using the relation between interaction parameter and copolymer composition. When the weight composition and molecular weight was the same, poly(ethylene‐co‐1‐octene) was slightly more miscible with linear polyethylene than poly(ethylene‐co‐1‐butene) was. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Poly(ethylene‐co‐octene)/multiwall carbon nanotube (PEOc/MWNT) nanocomposites were prepared by a melt blending process. The MWNT's solubility and the transmission electron microscopy (TEM) observation indicated that the MWNT bonded well with a PEOc matrix. This facilitated the orientation of the MWNT when shear and extensional forces were applied to the nanocomposite melts. Microcellular PEOc/MWNT nanocomposite foams were prepared by a rising temperature process using supercritical CO2 as the blowing agent. Various foaming times were selected to reveal the cell‐structure evolution during the cell growth stage. The obvious cell opening, resulting from cell coalescence, was observed in the cell wall in the neat PEOc foams. When the MWNT was introduced, however, the MWNT tended to orient in the cell wall. Here, as a result of the strain hardening, it acted as a self‐reinforcing element, protecting the cells from destruction during cell growth. Consequently, a dramatic decrease in the open cell content and a still high cell density at long foaming times were obtained in the PEOc/MWNT nanocomposite foams. The present study provides experimental evidence of the vital effects of nanoparticle orientation on cell coalescence. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
The rheological and morphological properties of blends based on high‐density polyethylene (HDPE) and a commercial ethylene–octene copolymer (EOC) produced by metallocene technology were investigated. The rheological properties were evaluated in steady and dynamic shear experiments at 190°C in shear rates ranging from 90 s?1 to 1500 s?1 and frequency range between 10?1 rad/s and 102 rad/s, respectively. These blends presented a high level of homogeneity in the molten state and rheological behavior was generally intermediate to those of the pure components. Scanning electron microscopy (SEM) showed that the blends exhibit dispersed morphologies with EOC domains distributed homogeneously and with particle size inferior to 2 μm. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2240–2246, 2002  相似文献   

14.
The effect of addition of propylene copolymer, produced by metallocene catalysts, on the mechanical, rheological, and morphological properties of blends based on poly(propylene) (PP) and ethylene–1‐octene copolymer (EOC) was evaluated. It was observed that the addition of 2 wt % propylene–1‐octene copolymer (POC) improved the impact strength of the EOC/PP blends. The rheological analysis indicated that the addition of propylene copolymer produced materials with improved processability. Thermal and morphological analysis showed that the POC acts as a compatibilizer on the EOC/PP blends. © 2003 Wiley Periodicals, J Appl Polym Sci 89: 1690–1695, 2003  相似文献   

15.
Poly(ethylene‐vinyl acetate) (EVA) copolymer was melt grafted with maleic anhydride (MAH) in a twin screw extruder in the presence of peroxide. It is confirmed that MAH has been melt grafted on the backbone of EVA by FTIR using the method of hydrolysis. The NMR analysis suggests that the grafting reaction occurs on the tertiary carbon of main chain of EVA other than the methyl moiety of vinyl acetate (VA) group. The incorporation of VA groups onto the matrix shows a competitive effect on the grafting. The existence of VA groups promotes the extent of MAH graft onto EVA; nevertheless, it also weakens the crystallizability of main chain. When the content of peroxide initiator is 0.1 wt % based on the polymer matrix, the grafting degree increases with increasing the concentration of monomer. When the peroxide content is higher than 0.1 wt %, side reactions such as crosslinking or disproportionation will be introduced into this system. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 841–846, 2006  相似文献   

16.
Extruded sheet of isotactic polypropylene and poly(ethylene‐co‐1‐octene) blends extruded from a counterrotating twin‐screw extruder were studied by scanning electron microscopy, tensile test, and small‐angle X‐ray scattering. The average characteristic length (Λm) determined by the statistical computing from the SEM images increases linearly with increasing of dispersed phase concentration. When POE content is 50 wt% (double continuous phase), Λm is two or three times as big as that of other blends ratio. The analyses of SAXS data confirm this result. Comparison has been made between experimental data of tensile test and those predicted from several meso‐mechanical models such as parallel model, series model, Halpin's model, Mori‐Tanaka's model, and modified mixture model. The modified mixture model is an effective method for predicting Young's modulus in comparison with other models. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers  相似文献   

17.
Poly(ethylene‐co‐octene) (PEOc) has been shown to provide a high toughening contribution to isotactic polypropylene (iPP). The theoretical modeling of flow‐induced crystallization (FIC) of blends of iPP and PEOc is not much reported in the literature. The aim of the present work is to clarify the FIC of iPP upon addition of PEOc in terms of theoretical modeling. The crystallization of iPP and PEOc blends in flow is simulated by a modified FIC model based on the conformation tensor theory. Two kinds of flow fields, shear flow and elongational flow, are considered in the prediction to analyze the influence of flow field on the crystallization kinetics of the polymer. The simulation results show that the elongation flow is much more effective than shear flow in reducing the dimensionless induction time of polymer crystallization. In addition, the induction time of crystallization in the blends is sensitive to the change of shear rate. In comparison with experimental data, the modified model shows its validity for the prediction of the induction time of crystallization of iPP in the blends. Moreover, the simulated relaxation time for the blends becomes longer with increasing percentage of PEOc in the blends. Copyright © 2012 Society of Chemical Industry  相似文献   

18.
The use of reactions between polycarbonate (PC) and polystyrene‐block‐poly(ethylene‐butylene)‐block‐polystyrene‐ grafted‐maleic anhydride (SEBS‐g‐MAH) is a convenient way to create SEBS‐g‐PC. Grafting was realized by reactive extrusion at three temperatures using SnOct2 or TBD catalysts. SEC analyses showed the apparition of a double distribution when the TBD was used. The mean residence time widely increased when this catalyst was used, and the rheological curves depicted a percolation effect of the SEBS nodules in the PC matrix. No explicit evolution was found with the use of SnOct2. The thermal analyses showed the disappearance of the PC phase transition temperature. The Van Gurp‐Palmen plots confirmed the efficiency of the TBD catalyst and that 260°C was the optimal reactive extrusion temperature. POLYM. ENG. SCI., 54:2660–2668, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
New polymer blends of polypropylene random copolymer (PP‐R) and poly(ethylene‐octene) (POE) were prepared by melt‐blending process using a corotating twin‐screw extruder. The POE content was varied up to 35%. The toughening efficiency of POE for PP‐R was evaluated by the mechanical properties of the resulted PP‐R/POE blends. The crystallization behavior and morphology of the blends were also studied. Results show that POE acts as nucleation agent to induce the crystallization of PP‐R matrix at higher crystallization temperature. Super‐toughened PP‐R/POE blends (Izod impact strength more than 500 J/m) can be readily achieved with only 10 wt % of POE. The high toughness of PP‐R/POE is attributed to cavitation and shear yielding of matrix PP‐R, as revealed by the morphology studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Rubber‐toughened polypropylene (PP) nanocomposites containing organophilic layered silicates were prepared by means of melt extrusion at 230 °C using a co‐rotating twin‐screw extruder in order to examine the influence of the organoclay and the addition of PP grafted with maleic anhydride (PPgMAH) as a compatibilizer on the morphological, mechanical and thermal properties. The mechanical properties of rubber‐toughened polypropylene nanocomposites (RTPPNCs) were studied through tensile, flexural and impact tests. Scanning electron microscopy (SEM) was used for investigation of the phase morphology and rubber particles size. X‐ray diffraction (XRD) was employed to characterize the formation of nanocomposites. The thermal properties were investigated by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The dynamic mechanical properties were examined by using dynamic mechanical analysis (DMA). From the tensile and flexural tests, the optimum loading of organoclay in RTPP was found to be 6 wt%. The optimum loading of PPgMAH, based on the tensile and flexural properties, was also 6 wt%. The increase in the organoclay and PPgMAH content resulted in a severe embrittlement, manifested by a drop in the impact strength and tensile elongation at break. XRD studies revealed that intercalated RTPPNCs had been successfully prepared where the macromolecular PP segments were intercalated into the interlayer space of the organoclay. In addition, the organoclay was dispersed more evenly in the RTPPNC as the PPgMAH content increased. TGA results revealed that the thermal stability of the RTPPNC improved significantly with the addition of a small amount of organoclay. Copyright © 2006 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号