首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we study the problem of control of discrete‐time linear time varying systems over uncertain channels. The uncertainty in the channels is modeled as a stochastic random variable. We use exponential mean square stability of the closed‐loop system as a stability criterion. We show that fundamental limitations arise for the mean square exponential stabilization for the closed‐loop system expressed in terms of statistics of channel uncertainty and the positive Lyapunov exponent of the open‐loop uncontrolled system. Our results generalize the existing results known in the case of linear time invariant systems, where Lyapunov exponents are shown to emerge as the generalization of eigenvalues from linear time invariant systems to linear time varying systems. Simulation results are presented to verify the main results of this paper. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper focuses on the problems of asymptotic stability and finite‐time stability (FTS) analysis, along with the state feedback controller design for networked control systems (NCSs) with consideration of both network‐induced delay and packet dropout. The closed‐loop NCS is modeled as a discrete‐time linear system with a time‐varying, bounded state delay. Sufficient conditions for the asymptotic stability and the FTS of the closed‐loop NCS are provided, respectively. Based on the stability analysis results, a mixed controller design method, which guarantees the asymptotic stability of the closed‐loop NCS in the usual case and the FTS of the closed‐loop NCS in the unusual case (that is, in some particular time intervals, large state delay occurs), is presented. A numerical example is provided to illustrate the effectiveness of the proposed mixed controller design method.  相似文献   

3.
This paper investigates the problem of designing robust linear quadratic regulators for uncertain polytopic continuous‐time systems over networks subject to delays. The main contribution is to provide a procedure to determine a discrete‐time representation of the weighting matrices associated to the quadratic criterion and an accurate discretized model, in such a way that a robust state feedback gain computed in the discrete‐time domain assures a guaranteed quadratic cost to the closed‐loop continuous‐time system. The obtained discretized model has matrices with polynomial dependence on the uncertain parameters and an additive norm‐bounded term representing the approximation residual error. A strategy based on linear matrix inequality relaxations is proposed to synthesize, in the discrete‐time domain, a digital robust state feedback control law that stabilizes the original continuous‐time system assuring an upper bound to the quadratic cost of the closed‐loop system. The applicability of the proposed design method is illustrated through a numerical experiment. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper deals with system identification for control of linear parameter varying systems. In practical applications, it is often important to be able to identify small plant changes in an incremental manner without shutting down the system and/or disconnecting the controller; unfortunately, closed‐loop system identification is more difficult than open‐loop identification. In this paper we prove that the so‐called Hansen scheme, a technique known from linear time‐invariant systems theory for transforming closed‐loop system identification problems into open‐loop‐like problems, can be extended to accommodate linear parameter varying systems as well. We investigate the identified subsystem's parameter dependency and observe that, under mild assumptions, the identified subsystem is affine in the parameter vector. Various identification methods are compared in direct and Hansen Scheme setups in simulation studies, and the application of the Hansen Scheme is seen to improve the identification performance.  相似文献   

5.
This paper addresses the global finite‐time tracking of robot manipulators. The commonly used linear proportional‐derivative (PD) plus (PD+) scheme is extended to achieve the global finite‐time tracking by replacing the linear errors with nonsmooth but continuous exponential errors. The global finite‐time stability of the closed loop with the proposed nonlinear PD plus control is shown using Lyapunov's direct method and finite‐time stability. Simulations performed on a two‐degree‐of‐freedom manipulator are provided to illustrate the effectiveness and the improved performance of the formulated algorithm. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
A new approach for design of robust decentralized controllers for continuous linear time‐invariant systems is proposed using linear matrix inequalities (LMIs). The proposed method is based on closed‐loop diagonal dominance. Sufficient conditions for closed‐loop stability and closed‐loop block‐diagonal dominance are obtained. Satisfying the obtained conditions is formulated as an optimization problem with a system of LMI constraints. By adding an extra LMI constraint to the system of LMI constraints in the optimization problem, the robust control is addressed as well. Accordingly, the decentralized robust control problem for a multivariable system is reduced to an optimization problem for a system of LMI constraints to be feasible. An example is given to show the effectiveness of the proposed method. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
This paper addresses the problem of the determination of stability regions for linear systems with delayed outputs and subject to input saturation, through anti‐windup strategies. A method for synthesizing anti‐windup gains aiming at maximizing a region of admissible states, for which the closed‐loop asymptotic stability and the given controlled output constraints are respected, is proposed. Based on the modelling of the closed‐loop system resulting from the controller plus the anti‐windup loop as a linear time‐delay system with a dead‐zone nonlinearity, constructive delay‐dependent stability conditions are formulated by using both quadratic and Lure Lyapunov–Krasovskii functionals. Numerical procedures based on the solution of some convex optimization problems with LMI constraints are proposed for computing the anti‐windup gain that leads to the maximization of an associated stability region. The effectiveness of the proposed technique is illustrated by some numerical examples. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
Robust finite‐time stability and stabilization problems for a class of linear uncertain time‐delay systems are studied. The concept of finite‐time stability is extended to linear uncertain time‐delay systems. Based on the Lyapunov method and properties of matrix inequalities, a sufficient condition that ensures finite‐time stability of linear uncertain time‐delay systems is given. By virtue of the results on finite‐time stability, a memoryless state feedback controller that guarantees that the closed‐loop system is finite time stable, is proposed. The controller design problem is solved by using the linear matrix inequalities and the cone complementarity linearization iterative algorithm. Numerical examples verify the efficiency of the proposed methods.  相似文献   

9.
The aim of the present paper was to increase the efficiency of self‐tuning minimum variance (MV) control of linear systems followed by the so‐called hard nonlinearities. To this end, an approach based on reordering of observations to be processed for the reconstruction of an unmeasurable internal intermediate signal, which acts between a linear dynamic time‐invariant (LTI) system and a static nonlinear block of the closed loop Wiener system with a saturation nonlinearity in an output, has been developed. The technique based on the ordinary least squares and on data partition is used for the internal signal extraction. The results of numerical simulation, identification, and self‐tuning MV control as well as generalized MV control of the second‐order discrete‐time closed loop LTI system with the saturation nonlinearity are given by the computer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
We study decentralized stabilization of discrete‐time linear time invariant (LTI) systems subject to actuator saturation using LTI controllers. The requirement of stabilization under both saturation constraints and decentralization imposes obvious necessary conditions on the open‐loop plant, namely that its eigenvalues are in the closed unit disc and further that the eigenvalues on the unit circle are not decentralized fixed modes. The key contribution of this work is to provide a broad sufficient condition for decentralized stabilization under saturation. Specifically, we show through an iterative argument that the stabilization is possible: whenever (1) the open‐loop eigenvalues are in the closed unit disc; (2) the eigenvalues on the unit circle are not decentralized fixed modes; and (3) these eigenvalues on the unit circle have algebraic multiplicity of 1. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
A general anti‐windup (AW) compensation scheme is provided for a class of input constrained feedback‐linearizable nonlinear systems. The controller considered is an inner‐loop nonlinear dynamic inversion controller, augmented with an outer‐loop linear controller, of arbitrary structure. For open‐loop globally exponentially stable plants, it is shown that (i) there always exists a globally stabilizing AW compensator corresponding to a nonlinear generalization of the Internal‐Model‐Control (IMC) AW solution; (ii) important operator theoretic parallels exist between the AW design scheme for linear control and the suggested AW design scheme for nonlinear affine plants and (iii) a more attractive AW compensator may be obtained by using a nonlinear state‐feedback term, which plays a role similar to the linear state‐feedback term in linear coprime factor‐based AW compensation. The results are demonstrated on a dual‐tank simulation example. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
This paper presents an online recorded data‐based design of composite adaptive dynamic surface control for a class of uncertain parameter strict‐feedback nonlinear systems, where both tracking errors and prediction errors are applied to update parametric estimates. Differing from the traditional composite adaptation that utilizes identification models and linear filters to generate filtered modeling errors as prediction errors, the proposed composite adaptation integrates closed‐loop tracking error equations in a moving time window to generate modified modeling errors as prediction errors. The time‐interval integral operation takes full advantage of online recorded data to improve parameter convergence such that the application of both identification models and linear filters is not necessary. Semiglobal practical asymptotic stability of the closed‐loop system is rigorously established by the time‐scales separation and Lyapunov synthesis. The major contribution of this study is that composite adaptation based on online recorded data is achieved at the presence of mismatched uncertainties. Simulation results have been provided to verify the effectiveness and superiority of this approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
This article presents an efficient solution to the stabilization pole placement problem for single‐input linear time‐invariant (LTI) systems by proportional‐derivative (PD) feedback. For a controllable system, any arbitrary closed‐loop poles can be placed in order to achieve the desired closed‐loop system performance. Its derivation is based on the transformation of linear system into Hessenberg form by a special coordinate transformation before solving the pole placement problem. The available degrees of freedom offered by PD feedback are utilized to obtain closed‐loop systems with small gains. So, the minimization problem for a suitably chosen cost function is formulated. Simulation results are included to show the effectiveness of the proposed approach.  相似文献   

14.
The precision of a closed‐loop controller system designed for an uncertain plant depends strongly upon the maximum extent to which it is possible to track the trend of time‐varying parameters of the plant. The aim of this study is to describe a new parameter estimation algorithm that is able to follow fast‐varying parameters in closed‐loop systems. The short‐time linear quadratic form (STLQF) estimation algorithm introduced in this paper is a technique for tracking time‐varying parameters based on short‐time analysis of the regressing variables in order to minimize locally a linear quadratic form cost function. The established cost function produces a linear combination of errors with several delays. To meet this objective, mathematical development of the STLQF estimation algorithm is described. To implement the STLQF algorithm, the algorithm is applied to a planar mobile robot with fast‐varying parameters of inertia and viscous and coulomb frictions. Next, performance of the proposed algorithm is assessed against noise effects and variation in the type of parameters.  相似文献   

15.
This paper proposes a control scheme for the problem of stabilizing partly unknown multiple‐input multiple‐output linear time‐varying retarded systems. The control scheme is composed by a singularly perturbed controller and a reference model. We assume the knowledge of a number of structural characteristics of the system as the boundedness and the knowledge of the bounds for the unknown parameters (and their derivatives) that define the system matrices, as well as the structure of these matrices. The results presented here are a generalization of previous results on linear time‐varying Single‐Input Single‐Output (SISO) and multiple‐input multiple‐output systems without delays and linear time‐varying retarded SISO systems. The closed‐loop system is a linear singularly perturbed retarded system with uniform asymptotic stability behavior. The uniform asymptotic stability of the singularly perturbed retarded system is guaranteed. We show how to design a control law such that the system dynamics for each output is given by a Hurwitz polynomial with constant coefficients. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Presented is a nonlinear controller design methodology for a class of linear regulating systems subjected to quantitative time‐domain constraints. The design objective is to satisfy an output time‐domain tolerance given an actuator saturation constraint despite an external step disturbance. The goal is to increase the allowable magnitude of the external disturbance beyond that achievable via linear control subject to the time‐domain specifications. The controller design process is comprised of two phases. In the first phase, a linear controller is designed that balances the trade‐off between output regulation and required actuation. To realize the linear design, the time‐domain performance specifications are mapped into amplitude and phase constraints which are in turn imposed on the frequency response of the linear open‐loop transfer function. In the second phase, the linear controller is then augmented with an odd nonlinearity. The coefficient for the nonlinear term is designed such that the gain and phase distortions (in the sense of describing functions) meet the frequency‐domain constraints. The describing function calculation is automated by a recursive Volterra Series relationship. The nonlinear controller design methodology is experimentally verified on the idle speed control of a Ford 4.6L V‐8 fuel injected engine. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

17.
18.
This paper focuses on the analysis and the design of event‐triggering scheme for discrete‐time systems. Both static event‐triggering scheme (SETS) and adaptive event‐triggering scheme (AETS) are presented for discrete‐time nonlinear and linear systems. What makes AETS different from SETS is that an auxiliary dynamic variable satisfying a certain difference equation is incorporated into the event‐triggering condition. The sufficient conditions of asymptotic stability of the closed‐loop event‐triggered control systems under both two triggering schemes are given. Especially, for the linear systems case, the minimum time between two consecutive control updates is discussed. Also, the quantitative relation among the system parameters, the preselected triggering parameters in AETS, and a quadratic performance index are established. Finally, the effectiveness and respective advantage of the proposed event‐triggering schemes are illustrated on a practical example. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
The problem of gain‐scheduled state feedback control for discrete‐time linear systems with time‐varying parameters is considered in this paper. The time‐varying parameters are assumed to belong to the unit simplex and to have bounded rates of variation, which depend on the values of the parameters and can vary from slow to arbitrarily fast. An augmented state vector is defined to take into account possible time‐delayed inputs, allowing a simplified closed‐loop analysis by means of parameter‐dependent Lyapunov functions. A gain‐scheduled state feedback controller that minimizes an upper bound to the ?? performance of the closed‐loop system is proposed. No grids in the parametric space are used. The design conditions are expressed in terms of bilinear matrix inequalities (BMIs) due to the use of extra variables introduced by the Finsler's lemma. By fixing some of the extra variables, the BMIs reduce to a convex optimization problem, providing an alternate semi‐definite programming algorithm to solve the problem. Robust controllers for time‐invariant uncertain parameters, as well as gain‐scheduled controllers for arbitrarily time‐varying parameters, can be obtained as particular cases of the proposed conditions. As illustrated by numerical examples, the extra variables in the BMIs can provide better results in terms of the closed‐loop ?? performance. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
A new approach to the design of a gain scheduled linear parameter‐varying (LPV) H controller, which places the closed‐loop poles in the region that satisfies the specified dynamic response, for an n‐joint rigid robotic manipulator, is presented. The nonlinear time‐varying robotic manipulator is modeled to be a LPV system with a convex polytopic structure with the use of the LPV convex decomposition technique in a filter introduced. State feedback controllers, which satisfy the H performance and the closed‐loop pole‐placement requirements, for each vertex of the convex polyhedron parameter space, are designed with the use of the linear matrix inequality (LMI) approach. Based on these designed feedback controllers for each vertex, a LPV controller with a smaller on‐line computation load and a convex polytopic structure is synthesized. Simulation and experiment results verify that the robotic manipulator with the LPV controller always has a good dynamic performance along with the variations of the joint positions. © 2002 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号