首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost‐effective solution‐based fabrication strategy for this new transparent electrode. The embedded nature of the metal‐mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum‐based metal deposition with an electrodeposition process and is potentially suitable for high‐throughput, large‐volume, and low‐cost production. In particular, this strategy enables fabrication of a high‐aspect‐ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq?1, as well as extremely high figures of merit up to 1.5 × 104, which are among the highest reported values in recent studies. Finally using our embedded metal‐mesh electrode, a flexible transparent thin‐film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage.  相似文献   

2.
Madaria AR  Kumar A  Zhou C 《Nanotechnology》2011,22(24):245201
The application of silver nanowire films as transparent conductive electrodes has shown promising results recently. In this paper, we demonstrate the application of a simple spray coating technique to obtain large scale, highly uniform and conductive silver nanowire films on arbitrary substrates. We also integrated a polydimethylsiloxane (PDMS)-assisted contact transfer technique with spray coating, which allowed us to obtain large scale high quality patterned films of silver nanowires. The transparency and conductivity of the films was controlled by the volume of the dispersion used in spraying and the substrate area. We note that the optoelectrical property, σ(DC)/σ(Op), for various films fabricated was in the range 75-350, which is extremely high for transparent thin film compared to other candidate alternatives to doped metal oxide film. Using this method, we obtain silver nanowire films on a flexible polyethylene terephthalate (PET) substrate with a transparency of 85% and sheet resistance of 33 Ω/sq, which is comparable to that of tin-doped indium oxide (ITO) on flexible substrates. In-depth analysis of the film shows a high performance using another commonly used figure-of-merit, Φ(TE). Also, Ag nanowire film/PET shows good mechanical flexibility and the application of such a conductive silver nanowire film as an electrode in a touch panel has been demonstrated.  相似文献   

3.
A novel approach to fabricate flexible organic solar cells is proposed without indium tin oxide (ITO) and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) using junction‐free metal nanonetworks (NNs) as transparent electrodes. The metal NNs are monolithically etched using nanoscale shadow masks, and they exhibit excellent optoelectronic performance. Furthermore, the optoelectrical properties of the NNs can be controlled by both the initial metal layer thickness and NN density. Hence, with an extremely thin silver layer, the appropriate density control of the networks can lead to high transmittance and low sheet resistance. Such NNs can be utilized for thin‐film devices without planarization by conductive materials such as PEDOT:PSS. A highly efficient flexible organic solar cell with a power conversion efficiency (PCE) of 10.6% and high device yield (93.8%) is fabricated on PEDOT‐free and ITO‐free transparent electrodes. Furthermore, the flexible solar cell retains 94.3% of the initial PCE even after 3000 bending stress tests (strain: 3.13%).  相似文献   

4.
Flexible thin‐film sensors have been developed for practical uses in invasive or noninvasive cost‐effective healthcare devices, which requires high sensitivity, stretchability, biocompatibility, skin/organ‐conformity, and often transparency. Graphene nanoplatelets can be spontaneously assembled into transparent and conductive ultrathin coatings on micropatterned surfaces or planar substrates via a convective Marangoni force in a highly controlled manner. Based on this versatile graphene assembled film preparation, a thin, stretchable and skin‐conformal sensor array (144 pixels) is fabricated having microtopography‐guided, graphene‐based, conductive patterns embedded without any complicated processes. The electrically controlled sensor array for mapping spatial distributions (144 pixels) shows high sensitivity (maximum gauge factor ≈1697), skin‐like stretchability (<48%), high cyclic stability or durability (over 105 cycles), and the signal amplification (≈5.25 times) via structure‐assisted intimate‐contacts between the device and rough skin. Furthermore, given the thin‐film programmable architecture and mechanical deformability of the sensor, a human skin‐conformal sensor is demonstrated with a wireless transmitter for expeditious diagnosis of cardiovascular and cardiac illnesses, which is capable of monitoring various amplified pulse‐waveforms and evolved into a mechanical/thermal‐sensitive electric rubber‐balloon and an electronic blood‐vessel. The microtopography‐guided and self‐assembled conductive patterns offer highly promising methodology and tool for next‐generation biomedical devices and various flexible/stretchable (wearable) devices.  相似文献   

5.
An air‐stable transparent conductive film with “quasi‐freestanding” graphene supported on horizontal single walled carbon nanotubes (SWCNTs) arrays is fabricated. The sheet resistance of graphene films stacked via layer‐by‐layer transfer (LBL) on quartz, and modified by 1‐Pyrenebutyric acid N‐hydroxysuccinimide ester (PBASE), is reduced from 273 Ω/sq to about 76 Ω/sq. The electrical properties are stable to heat treatment (up to 200 ºC) and ambient exposure. Organic light‐emitting diodes (OLEDs) constructed of this carbon anode (T ≈ 89.13% at 550 nm) exhibit ≈88% power efficiency of OLEDs fabricated on an ITO anode (low turn on voltage ≈3.1 eV, high luminance up to ≈29 490 cd/m2, current efficiency ≈14.7 cd/A). Most importantly, the entire graphene‐on‐SWCNT hybrid electrodes can be transferred onto plastic (PET) forming a highly‐flexible OLED device, which continues to function without degradation in performance at bending angles >60°.  相似文献   

6.
Great challenges remain concerning the cost‐effective manufacture of high‐performance metal meshes for transparent glass heaters (TGHs). Here, a high‐performance silver mesh fabrication technique is proposed for TGHs using electric‐field‐driven microscale 3D printing and a UV‐assisted microtransfer process. The results show a more optimal trade‐off in sheet resistance (Rs = 0.21 Ω sq?1) and transmittance (T = 93.9%) than for indium tin oxide (ITO) and ITO substitutes. The fabricated representative TGH also exhibits homogeneous and stable heating performance, remarkable environmental adaptability (constant Rs for 90 days), superior mechanical robustness (Rs increase of only 0.04 in harsh conditions–sonication at 100 °C), and strong adhesion force with a negligible increase in Rs (2–12%) after 100 peeling tests. The practical viability of this TGH is successfully demonstrated with a deicing test (ice cube: 21 cm3, melting time: 78 s, voltage and glass thickness: 4 V, 5 mm). All of these advantages of the TGHs are attributed to the successful fabrication of silver meshes with high resolution and high aspect ratio on the glass substrate using the thick film silver paste. The proposed technique is a promising new tool for the inexpensive fabrication of high‐performance TGHs.  相似文献   

7.
Fabrication of junction‐free Ag fiber electrodes for flexible organic light‐emitting diodes (OLEDs) is demonstrated. The junction‐free Ag fiber electrodes are fabricated by electrospun polymer fibers used as an etch mask and wet etching of Ag thin film. This process facilitates surface roughness control, which is important in transparent electrodes based on metal wires to prevent electrical instability of the OLEDs. The transmittance and resistance of Ag fiber electrodes can be independently adjusted by controlling spinning time and Ag deposition thickness. The Ag fiber electrode shows a transmittance of 91.8% (at 550 nm) at a sheet resistance of 22.3 Ω □?1, leading to the highest OLED efficiency. In addition, Ag fiber electrodes exhibit excellent mechanical durability, as shown by measuring the change in resistance under repeatable mechanical bending and various bending radii. The OLEDs with Ag fiber electrodes on a flexible substrate are successfully fabricated, and the OLEDs show an enhancement of EQE (≈19%) compared to commercial indium tin oxide electrodes.  相似文献   

8.
Direct growth of graphene on glass can bring an innovative revolution by coupling the complementary properties of traditional glass and modern graphene (such as transparency and conductivity), offering brand new daily‐life related applications. However, preparation of high‐quality graphene on nonmetallic glass is still challenging. Herein, the direct route of low sheet resistance graphene on glass is reported by using in situ‐introduced water as a mild etchant and methane as a carbon precursor via chemical vapor deposition. The derived graphene features with large domain sizes and few amorphous carbon impurities. Intriguingly, the sheet resistance of graphene on glass is dramatically lowered down to ≈1170 Ω sq?1 at the optical transmittance ≈93%, ≈20% of that derived without the water etchant. Based on the highly conductive and optical transparent graphene on glass, a see‐through thermochromic display is thus fabricated with transparent graphene glass as a heater. This work can motivate further investigations of the direct synthesis of high‐quality graphene on functional glass and its versatile applications in transparent electronic devices or displays.  相似文献   

9.
The rapid development of Internet of Things mobile terminals has accelerated the market's demand for portable mobile power supplies and flexible wearable devices. Here, an embedded metal-mesh transparent conductive electrode (TCE) is prepared on poly(ethylene terephthalate) (PET) using a novel selective electrodeposition process combined with inverted film-processing methods. This embedded nickel (Ni)-mesh flexible TCE shows excellent photoelectric performance (sheet resistance of ≈0.2–0.5 Ω sq−1 at high transmittance of ≈85–87%) and mechanical durability. The PET/Ni-mesh/polymer poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS PH1000) hybrid electrode is used as a transparent electrode for perovskite solar cells (PSCs), which exhibit excellent electric properties and remarkable environmental and mechanical stability. A power conversion efficiency of 17.3% is obtained, which is the highest efficiency for a PSC based on flexible transparent metal electrodes to date. For perovskite crystals that require harsh growth conditions, their mechanical stability and environmental stability on flexible transparent embedded metal substrates are studied and improved. The resulting flexible device retains 76% of the original efficiency after 2000 bending cycles. The results of this work provide a step improvement in flexible PSCs.  相似文献   

10.
Despite the high expectation of deformable and see‐through displays for future ubiquitous society, current light‐emitting diodes (LEDs) fail to meet the desired mechanical and optical properties, mainly because of the fragile transparent conducting oxides and opaque metal electrodes. Here, by introducing a highly conductive nanofibrillated conducting polymer (CP) as both deformable transparent anode and cathode, ultraflexible and see‐through polymer LEDs (PLEDs) are demonstrated. The CP‐based PLEDs exhibit outstanding dual‐side light‐outcoupling performance with a high optical transmittance of 75% at a wavelength of 550 nm and with an excellent mechanical durability of 9% bending strain. Moreover, the CP‐based PLEDs fabricated on 4 µm thick plastic foils with all‐solution processing have extremely deformable and foldable light‐emitting functionality. This approach is expected to open a new avenue for developing wearable and attachable transparent displays.  相似文献   

11.
In this work, a whole manufacturing process of the curved copper nanowires (CCNs) based flexible transparent conductive electrode (FTCE) is reported with all solution processes, including synthesis, coating, and networking. The CCNs with high purity and good quality are designed and synthesized by a binary polyol coreduction method. In this reaction, volume ratio and reaction time are the significant factors for the successful synthesis. These nanowires have an average 50 nm in width and 25–40 μm range in length with curved structure and high softness. Furthermore, a meniscus‐dragging deposition (MDD) method is used to uniformly coat the well‐dispersed CCNs on the glass or polyethylene terephthalate substrate with a simple process. The optoelectrical property of the CCNs thin films is precisely controlled by applying the MDD method. The FTCE is fabricated by networking of CCNs using solvent‐dipped annealing method with vacuum‐free, transfer‐free, and low‐temperature conditions. To remove the natural oxide layer, the CCNs thin films are reduced by glycerol or NaBH4 solution at low temperature. As a highly robust FTCE, the CCNs thin film exhibits excellent optoelectrical performance (T = 86.62%, R s = 99.14 Ω ?1), flexibility, and durability (R/R 0 < 1.05 at 2000 bending, 5 mm of bending radius).  相似文献   

12.
Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium‐based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high‐strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low‐voltage regime (from 0.1 to 5 V), with long‐term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm?2), high electrochemical capacitance (≈mF g?1), and minimal mechanical stress at the polymer/metal composite interface upon deformation.  相似文献   

13.
Flexible perovskite photodetectors are usually constructed on indium‐tin‐oxide‐coated polymer substrates, which are expensive, fragile, and not resistant to high temperature. Herein, for the first time, a high‐performance flexible perovskite photodetector is fabricated based on low‐cost carbon cloth via a facile solution processable strategy. In this device, perovskite microcrystal and Spiro‐OMeTAD (hole transporting material) blended film act as active materials for light detection, and carbon cloth serves as both a flexible substrate and a conductive electrode. The as‐fabricated photodetector shows a broad spectrum response from ultraviolet to near‐infrared light, high responsivity, fast response speed, long‐term stability, and self‐powered capability. Flexible devices show negligible degradation after several tens of bending cycles and at the extremely bending angle of 180°. This work promises a new technique to construct flexible, high‐performance photodetectors with low cost and self‐powered capability.  相似文献   

14.
Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω−1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.  相似文献   

15.
《Thin solid films》1987,151(1):71-86
Thin films of polymeric copper acetylacetonate were prepared by means of glow discharge plasma polymerization. The films thus obtained showed a variety of colours such as colourless transparent, yellow, green, blue, red and gold as well as a wide range of electroconductivities from insulating (10-10 S cm-1 or less) to metallic (104 S cm-1 or more) depending on the plasma conditions. With increasing total plasma energy, e.g. by increasing the plasma power, and/or the plasma duration, the film became more conductive.The films with a conductivity between 10-5 and 10-2 S cm-1 showed bistable switching characteristics corresponding to high resistance (OFF) and low resistance (ON) states.The structure of the films was investigated using Fourier transform IR spectroscopy, X-ray photoelectron spectroscopy, electron diffraction and electron microscopy, and a texture of dispersed metal islands within the polymer matrix was found.  相似文献   

16.
A transparent nanoporous tin oxide film electrode was fabricated by anodizing a tin film on a fluorine-doped tin oxide (FTO) film electrode. The resulting anodized nanoporous tin oxide (ANPTO) film has columnar-type pore channels with around 50 nm in diameter and is optically transparent. Electrochemical measurements with Fe(CN)63− as a redox probe clearly revealed that the ANPTO film could be used for a working electrode with a large internal surface area. Moreover, it was found that ANPTO film had a wider anodic potential window (> ca. 2.0 V) than conventional metal oxide electrodes, such as FTO and indium tin oxide film electrodes (> ca. 1.3 V). The wide anodic potential window improves applicability of a transparent metal oxide electrode for various electrochemical oxidation reactions, which are often interfered by oxygen evolution in water. These results conclude that the ANPTO film can be used as an advanced transparent nanoporous film electrode.  相似文献   

17.
We report on transparent conductive indium tin oxide (In2O3:Sn; ITO) nanoparticle films processed at a low temperature of 130 °C for the application in lighting devices using spin coating and doctor blading techniques. Major emphasis is put on the beneficial application of the particular transparent electrode material for the fabrication of patterned large area electroluminescence lamps. In order to improve film properties like adhesion and conductivity, hybrid nanoparticle-polymer blends out of ITO particles and organic film-forming agent polyvinylpyrrolidone (PVP) and the organofunctional coupling agent 3-methacryloxypropyltrimethoxysilane (MPTS) have been developed. The layers were cured by UV-irradiation, which was also used for lateral structuring of the transparent, conductive electrode. Additional low-temperature heat treatment (T = 130 °C) in air and forming gas improved the electronic properties. While pure ITO nanoparticulate layers processed at 130 °C exhibited conductance of up to 3.1 Ω− 1 cm− 1, the nanocomposite coatings showed a conductance of up to 9.8 Ω− 1 cm− 1. Corresponding layers with a sheet resistance of 750 Ω/□ were applied in electroluminescent lamps.  相似文献   

18.
Abstract

Highly conductive, transparent and flexible planar electrodes were fabricated using interwoven silver nanowires and single-walled carbon nanotubes (AgNW:SWCNT) in a PEDOT:PSS matrix via an epoxy transfer method from a silicon template. The planar electrodes achieved a sheet resistance of 6.6 ± 0.0 Ω/□ and an average transmission of 86% between 400 and 800 nm. A high figure of merit of 367 Ω?1 is reported for the electrodes, which is much higher than that measured for indium tin oxide and reported for other AgNW composites. The AgNW:SWCNT:PEDOT:PSS electrode was used to fabricate low temperature (annealing free) devices demonstrating their potential to function with a range of organic semiconducting polymer:fullerene bulk heterojunction blend systems.  相似文献   

19.
Carbon nanotube (CNT)/semiconducting oxide hybrids are an ideal architecture for light‐harvesting devices, in which the CNTs are expected to not only act as a scaffold but also provide fast transport paths for photogenerated charges in the oxide. However, the current potential of CNTs for charge transport is largely suppressed due to the nanotubes not being interconnected but isolated by the low conductive oxide coatings. Herein, a flexible and conductive CNT/TiO2 core/shell heterostructure film is reported, with aligned and interconnected CNTs wrapped in a continuous TiO2 coating. Without using additional transparent conducting oxide (TCO) substrates, this unique feature of the film boosts the incident photon‐to‐electron conversion efficiency to 32%, outperforming TiO2 nanoparticle electrodes fabricated on TCO substrates. Moreover, the film shows high structural stability and can generate a stable photocurrent even after being bent hundreds of times.  相似文献   

20.
A platinum network‐based transparent electrode has been fabricated by electrospinning. The unique nanobelt structured electrode demonstrates low sheet resistance (about 16 Ω sq?1) and high transparency of 80% and excellent flexibility. One of the most interesting demonstrations of this Pt nanobelt electrode is its excellent reversibly resilient characteristic. The electric conductivity of the flexible Pt electrode can recover to its initial value after 160% extending and this performance is repeatable and stable. The good linear relationship between the resistance and strain of the unique structured Pt electrode makes it possible to assemble a wearable high sensitive strain sensor. Present reported Pt nanobelt electrode also reveals potential applications in electrode for flexible fuel cells and highly transparent ultraviolet (UV) sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号