首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Sensitive and selective detection of nitric oxide (NO) in the human body is crucial since it has the vital roles in the physiological and pathological processes. This study reports a new type of electrochemical NO biosensor based on zinc‐dithiooxamide framework derived porous ZnO nanoparticles and polyterthiophene‐rGO composite. By taking advantage of the synergetic effect between ZnO and poly(TTBA‐rGO) (TTBA = 3′‐(p‐benzoic acid)‐2,2′:5′,2″‐terthiophene, rGO = reduced graphene oxide) nanocomposite layer, the poly(TTBA‐rGO)/ZnO sensor probe displays excellent electrocatalytic activity and explores to detect NO released from normal and cancer cell lines. The ZnO is immobilized on a composite layer of poly(TTBA‐rGO). The highly porous ZnO offers a high electrolyte accessible surface area and high ion–electron transport rates that efficiently catalyze the NO reduction reaction. Amperometry with the modified electrode displays highly sensitive response and wide dynamic range of 0.019–76 × 10?6m with the detection limit of 7.7 ± 0.43 × 10?9m . The sensor probe is demonstrated to detect NO released from living cells by drug stimulation. The proposed sensor provides a powerful platform for the low detection limit that is feasible for real‐time analysis of NO in a biological system.  相似文献   

2.
A variety of nanomaterial‐based biosensors have been developed to sensitively detect biomolecules in vitro, yet limited success has been achieved in real‐time sensing in vivo. The application of microneedles (MN) may offer a solution for painless and minimally‐invasive transdermal biosensing. However, integration of nanostructural materials on microneedle surface as transdermal electrodes remains challenging in applications. Here, a transdermal H2O2 electrochemical biosensor based on MNs integrated with nanohybrid consisting of reduced graphene oxide and Pt nanoparticles (Pt/rGO) is developed. The Pt/rGO significantly improves the detection sensitivity of the MN electrode, while the MNs are utilized as a painless transdermal tool to access the in vivo environment. The Pt/rGO nanostructures are protected by a water‐soluble polymer layer to avoid mechanical destruction during the MN skin insertion process. The polymer layer can readily be dissolved by the interstitial fluid and exposes the Pt/rGO on MNs for biosensing in vivo. The applications of the Pt/rGO‐integrated MNs for in situ and real‐time sensing of H2O2 in vivo are demonstrated both on pigskin and living mice. This work offers a unique real‐time transdermal biosensing system, which is a promising tool for sensing in vivo with high sensitivity but in a minimally‐invasive manner.  相似文献   

3.
Although the detection of methylated cell free DNA represents one of the most promising approaches for relapse risk assessment in cancer patients, the low concentration of cell‐free circulating DNA constitutes the biggest obstacle in the development of DNA methylation‐based biomarkers from blood. This paper describes a method for the measurement of genomic methylation content directly on circulating tumor cells (CTC), which could be used to deceive the aforementioned problem. Since CTC are disease related blood‐based biomarkers, they result essential to monitor tumor's stadiation, therapy, and early relapsing lesions. Within surface's bio‐functionalization and cell's isolation procedure standardization, the presented approach reveals a singular ability to detect high 5‐methylcytosine CTC‐subset content in the whole CTC compound, by choosing folic acid (FA) as transducer molecule. Sensitivity and specificity, calculated for FA functionalized surface (FA‐surface), result respectively on about 83% and 60%. FA‐surface, allowing the detection and characterization of early metastatic dissemination, provides a unique advance in the comprehension of tumors progression and dissemination confirming the presence of CTC and its association with high risk of relapse. This functionalized surface identifying and quantifying high 5‐methylcytosine CTC‐subset content into the patient's blood lead significant progress in cancer risk assessment, also providing a novel therapeutic strategy.  相似文献   

4.
Biomolecular self‐assembly is a powerful approach for fabricating supramolecular architectures. Over the past decade, a myriad of biomolecular assemblies, such as self‐assembly proteins, lipids, and DNA nanostructures, have been used in a wide range of applications, from nano‐optics to nanoelectronics and drug delivery. The method of controlling when and where the self‐assembly starts is essential for assembly dynamics and functionalization. Here, train‐shaped DNA nanostructures are actively self‐assembled using DNA tiles as artificial “carriages,” hairpin structures as “couplers,” and initiators of catalytic hairpin assembly (CHA) reactions as “wrenches.” The initiator wrench can selectively open the hairpin couplers to couple the DNA tile carriages with high product yield. As such, DNA nanotrains are actively prepared with two, three, four, or more carriages. Furthermore, by flexibly modifying the carriages with “biotin seats” (biotin‐modified DNA tiles), streptavidin “passengers” are precisely arranged in corresponding seats. The applications of the CHA‐triggered self‐assembly mechanism are also extended for assembling the large DNA origami dimer. With the creation of 1D architectures established, it is thought that this CHA‐triggered self‐assembly mechanism may provide a new element of control for complex autonomous assemblies from a variety of starting materials with specific sites and times.  相似文献   

5.
Carbon nanomaterials have excellent humidity sensing properties. Here, it is demonstrated that multiwalled carbon‐nanotube (MWCNT)‐ and reduced‐graphene‐oxide (rGO)‐based conductive films have opposite humidity/electrical resistance responses: MWCNTs increase their electrical resistance (positive response) and rGOs decrease their electrical resistance (negative response). The authors propose a new phenomenology that describes a “net”‐like model for MWCNT films and a “scale”‐like model for rGO films to explain these behaviors based on contributions from junction resistances (at interparticle junctions) and intrinsic resistances (of the particles). This phenomenology is accordingly validated via a series of experiments, which complement more classical models based on proton conductivity. To explore the practical applications of the converse humidity/resistance responses, a humidity‐insensitive MWCNT/rGO hybrid conductive films is developed, which has the potential to greatly improve the stability of carbon‐based electrical device to humidity. The authors further investigate the application of such films to human‐finger electronics by fabricating transparent flexible devices consisting of a polyethylene terephthalate substrate equipped with an MWCNT/rGO pattern for gesture recognition, and MWCNT/rGO/MWCNT or rGO/MWCNT/rGO patterns for 3D noncontact sensing, which will be complementary to existing 3D touch technology.  相似文献   

6.
The noninvasive monitoring of protein secretion of cells responding to drug treatment is an effective and essential tool in latest drug development and for cytotoxicity assays. In this work, a surface functionalization method is demonstrated for specific detection of protein released from cells and a platform that integrates highly sensitive optical devices, called whispering‐gallery mode biosensors, with precise microfluidics control to achieve label‐free and real‐time detection. Cell biomarker release is measured in real time and with nanomolar sensitivity. The surface functionalization method allows for antibodies to be immobilized on the surface for specific detection, while the microfluidics system enables detection in a continuous flow with a negligible compromise between sensitivity and flow control over stabilization and mixing. Cytochrome c detection is used to illustrate the merits of the system. Jurkat cells are treated with the toxin staurosporine to trigger cell apoptosis and cytochrome c released into the cell culture medium is monitored via the newly invented optical microfluidic platform.  相似文献   

7.
Despite recent progress in 2D nanomaterials‐based biosensing, it remains challenging to achieve sensitive and high selective detection. This study develops few‐layer graphdiyne (GD) nanosheets (NSs) that are used as novel sensing platforms for a variety of fluorophores real‐time detection of DNA with low background and high signal‐to‐noise ratio, which show a distinguished fluorescence quenching ability and different affinities toward single‐stranded DNA and double‐stranded DNA. Importantly, for the first time, a few‐layer GD NSs‐based multiplexed DNA sensor is developed.  相似文献   

8.
A novel imide‐functionalized arene, di(fluorothienyl)thienothiophene diimide (f‐FBTI2), featuring a fused backbone functionalized with electron‐withdrawing F atoms, is designed, and the synthetic challenges associated with highly electron‐deficient fluorinated imide are overcome. The incorporation of f‐FBTI2 into polymer affords a high‐performance n‐type semiconductor f‐FBTI2‐T, which shows a reduced bandgap and lower‐lying lowest unoccupied molecular orbital (LUMO) energy level than the polymer analog without F or with F‐functionalization on the donor moiety. These optoelectronic properties reflect the distinctive advantages of fluorination of electron‐deficient acceptors, yielding “stronger acceptors,” which are desirable for n‐type polymers. When used as a polymer acceptor in all‐polymer solar cells, an excellent power conversion efficiency of 8.1% is achieved without any solvent additive or thermal treatment, which is the highest value reported for all‐polymer solar cells except well‐studied naphthalene diimide and perylene diimide‐based n‐type polymers. In addition, the solar cells show an energy loss of 0.53 eV, the smallest value reported to date for all‐polymer solar cells with efficiency > 8%. These results demonstrate that fluorination of imide‐functionalized arenes offers an effective approach for developing new electron‐deficient building blocks with improved optoelectronic properties, and the emergence of f‐FBTI2 will change the scenario in terms of developing n‐type polymers for high‐performance all‐polymer solar cells.  相似文献   

9.
Conjugated‐polyelectrolyte (CPE)‐functionalized reduced graphene oxide (rGO) sheets are synthesized for the first time by taking advantage of a specially designed CPE, PFVSO3, with a planar backbone and charged sulfonate and oligo(ethylene glycol) side chains to assist the hydrazine‐mediated reduction of graphene oxide (GO) in aqueous solution. The resulting CPE‐functionalized rGO (PFVSO3‐rGO) shows excellent solubility and stability in a variety of polar solvents, including water, ethanol, methanol, dimethyl sulfoxide, and dimethyl formamide. The morphology of PFVSO3‐rGO is studied by atomic force microscopy, X‐ray diffraction, and transmission electron microscopy, which reveal a sandwich‐like nanostructure. Within this nanostructure, the backbones of PFVSO3 stack onto the basal plane of rGO sheets via strong π–π interactions, while the charged hydrophilic side chains of PFVSO3 prevent the rGO sheets from aggregating via electrostatic and steric repulsions, thus leading to the solubility and stability of PFVSO3‐rGO in polar solvents. Optoelectronic studies show that the presence of PFVSO3 within rGO induces photoinduced charge transfer and p‐doping of rGO. As a result, the electrical conductivity of PFVSO3‐rGO is not only much better than that of GO, but also than that of the unmodified rGO.  相似文献   

10.
A high‐sensitivity and low‐power theranostic nanosystem that combines with synergistic photothermal therapy and surface‐enhanced Raman scattering (SERS) mapping is constructed by mesoporous silica self‐assembly on the reduced graphene oxide (rGO) nanosheets with nanogap‐aligned gold nanoparticles (AuNPs) encapsulated and arranged inside the nanochannels of the mesoporous silica layer. Rhodamine 6G (R6G) as a Raman reporter is then encapsulated into the nanochannels and anti‐epidermal growth factor receptor (EGFR) is conjugated on the nanocomposite surface, defined as anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G, where PEG is polyethylene glycol and CPSS is carbon porous silica nanosheets. SERS spectra results show that rGO@CPSS‐Au‐R6G enhances 5 × 106 magnification of the Raman signals and thus can be applied in the noninvasive cell tracking. Furthermore, it displays high sensitivity (detection limits: 10?8m R6G solution) due to the “hot spots” effects by the arrangements of AuNPs in the nanochannels of mesoporous silica. The highly selective targeting of overexpressing EGFR lung cancer cells (A549) is observed in the anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G, in contrast to normal cells (MRC‐5). High photothermal therapy efficiency with a low power density (0.5 W cm?2) of near‐infrared laser can be achieved because of the synergistic effect by conjugated AuNPs and rGO nanosheets. These results demonstrate that the anti‐EGFR‐PEG‐rGO@CPSS‐Au‐R6G is an excellent new theranostic nanosystem with cell targeting, cell tracking, and photothermal therapy capabilities.  相似文献   

11.
A reliable method to prepare a surface‐enhanced Raman scattering (SERS) active substrate is developed herein, by electrodeposition of gold nanoparticles (Au NPs) on defect‐engineered, large area chemical vapour deposition graphene (GR). A plasma treatment strategy is used in order to engineer the structural defects on the basal plane of large area single‐layer graphene. This defect‐engineered Au functionalized GR, offers reproducible SERS signals over the large area GR surface. The Raman data, along with X‐ray photoelectron spectroscopy and analysis of the water contact angle are used to rationalize the functionalization of the graphene layer. It is found that Au NPs functionalization of the “defect‐engineered” graphene substrates permits detection of concentrations as low as 10?16 m for the probe molecule Rhodamine B, which offers an outstanding molecular sensing ability. Interestingly, a Raman signal enhancement of up to ≈108 is achieved. Moreover, it is observed that GR effectively quenches the fluorescence background from the Au NPs and molecules due to the strong resonance energy transfer between Au NPs and GR. The results presented offer significant direction for the design and fabrication of ultra‐sensitive SERS platforms, and also open up possibilities for novel applications of defect engineered graphene in biosensors, catalysis, and optoelectronic devices.  相似文献   

12.
Highly reduced graphene oxide (rGO) films are fabricated by combining reduction with smeared hydrazine at low temperature (e.g., 100 °C) and the multilayer stacking technique. The prepared rGO film, which has a lower sheet resistance (≈160–500 Ω sq−1) and higher conductivity (26 S cm−1) as compared to other rGO films obtained by commonly used chemical reduction methods, is fully characterized. The effective reduction can be attributed to the large “effective reduction depth” in the GO films (1.46 µm) and the high C1s/O1s ratio (8.04). By using the above approach, rGO films with a tunable thickness and sheet resistance are achieved. The obtained rGO films are used as electrodes in polymer memory devices, in a configuration of rGO/poly(3‐hexylthiophene) (P3HT):phenyl‐C61‐butyric acid methyl ester (PCBM)/Al, which exhibit an excellent write‐once‐read‐many‐times effect and a high ON/OFF current ratio of 106.  相似文献   

13.
The first reconfigurable colorimetric DNA switches based on target DNA binding are reported. This DNA binding actuates a change in the interparticle distance between gold nanoparticle dimers. A significant spectral shift of 68 nm is achievable from on‐off switching. The reconfigurability is possible owing to thiol and EDC‐imidazole coupling which anchors the DNA linkers to the nanoparticles. The huge spectral shift allows the unaided eye to observe single target biomolecular binding event in real time under a darkfield microscope. The limit‐of‐detection for target molecules in PBS and human serum are 10?13 M and 10?11 M respectively. An improved fabrication strategy via asymmetric functionalization is also described, assisted by solid phase synthesis which minimizes the formation of trimers and multimers.  相似文献   

14.
A scalable and low‐cost production of graphene nanoplatelets (GnPs) is one of the most important challenges for their commercialization. A simple mechanochemical reaction has been developed and applied to prepare various edge‐functionalized GnPs (EFGnPs). EFGnPs can be produced in a simple and ecofriendly manner by ball milling of graphite with target substances (X = nonmetals, halogens, semimetals, or metalloids). The unique feature of this method is its use of kinetic energy, which can generate active carbon species by unzipping of graphitic C? C bonds in dry conditions (no solvent). The active carbon species efficiently pick up X substance(s), leading to the formation of graphitic C? X bonds along the broken edges and the delamination of graphitic layers into EFGnPs. Unlike graphene oxide (GO) and reduced GO (rGO), the preparation of EFGnPs does not involve toxic chemicals, such as corrosive acids and toxic reducing agents. Furthermore, the prepared EFGnPs preserve high crystallinity in the basal area due to their edge‐selective functionalization. Considering the available edge X groups that can be selectively employed, the potential applications of EFGnPs are unlimited. In this context, the synthesis, characterizations, and applications of EFGnPs, specifically, as metal‐free carbon‐based electrocatalysts for dye‐sensitized solar cells (DSSCs) in both cobalt and iodine electrolytes are reviewed.  相似文献   

15.
An all‐carbon pressure sensor is designed and fabricated based on reduced graphene oxide (rGO) nanomaterials. By sandwiching one layer of superelastic rGO aerogel between two freestanding high‐conductive rGO thin papers, the sensor works based on the contact resistance at the aerogel–paper interfaces, getting rid of the alien materials such as polymers and metals adopted in traditional sensors. Without the limitation of alien materials, the all‐carbon sensors demonstrate an ultrawide detecting range (0.72 Pa–130 kPa), low energy consumption (≈0.58 µW), ultrahigh sensitivity (349–253 kPa?1) at low‐pressure regime (<1.4 Pa), fast response time (8 ms at 1 kPa), high stability (10 000 unloading–loading cycles between 0 and 1 kPa), light weight (<10 mg), easily scalable fabrication process, and excellent chemical stability. These merits enable them to detect real‐time human physiological signals and monitor the weights of various droplets of not only water but also hazardous chemical reagents including strong acid, strong alkali, and organic solvents. This shows their great potential applications in real‐time health monitoring, sport performance detecting, harsh environment‐related robotics and industry, and so forth.  相似文献   

16.
Wide‐range, well‐separated, and tunable lifetime nanocomposites with ultrabright fluorescence are highly desirable for applications in optical multiplexing such as multiplexed biological detection, data storage, and security printing. Here, a synthesis of tunable fluorescence lifetime nanocomposites is reported featuring europium chelate grafted onto the surface of plasmonic core–shell nanoparticles, and systematically investigated their optical performance. In a single red color emission channel, more than 12 distinct fluorescence lifetime populations with high fluorescence efficiency (up to 73%) are reported. The fluorescence lifetime of Eu‐grafted core–shell nanoparticles exhibits a wider tunable range, possesses larger lifetime interval and is more sensitive to separation distance than that of ordinary Eu‐doping core–shell type. These superior performances are attributed to the unique nanostructure of Eu‐grafed type. In addition, these as‐prepared nanocomposites are used for security printing to demonstrate optical multiplexing applications. The optical multiplexing experiments show an interesting pseudo‐information “a rabbit in a well” and conceal the real message “NKU.”  相似文献   

17.
By combining two kinds of solution‐processable two‐dimensional materials, a flexible transistor array is fabricated in which MoS2 thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm‐long MoS2 channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS2 thin film with Pt nanoparticles further increases the sensitivity by up to ~3 times. The successful incorporation of a MoS2 thin‐film into the electronic sensor promises its potential application in various electronic devices.  相似文献   

18.
The novel application of two‐dimensional (2D) single‐layer ternary chalcogenide nanosheets as “capture‐release” fluorescence‐based biomolecular nanosensors is demonstrated. Fluorescently labeled biomolecular probe is first captured by the ultrathin Ta2NiS5 nanosheets and then released upon adding analyte containing a target biomolecule due to the higher probe‐target affinity. Here, the authors use a nucleic acid probe for the model target biomolecule Plasmodium lactate dehydrogenase, which is an important malarial biomarker. The ultrathin Ta2NiS5 nanosheet serves as a highly efficient fluorescence quencher and the nanosensor developed from the nanosheet is highly sensitive and specific toward the target biomolecule. Apart from the specificity toward the target biomolecule in homogeneous solutions, the developed nanosensor is capable of detecting and differentiating the target in heterogeneous solutions consisting of either a mixture of biomolecules or serum, with exceptional specificity. The simplicity of the “capture‐release” method, by eliminating the need for preincubation of the probe with the test sample, may facilitate further development of portable and rapid biosensors. The authors anticipate that this ternary chalcogenide nanosheet‐based biomolecular nanosensor will be useful for the rapid detection and differentiation of a wide range of chemical and biological species.  相似文献   

19.
Surface‐enhanced Raman scattering (SERS) is a new optical spectroscopic analysis technique with potential for highly sensitive detection of molecules. Recently, many efforts have been made to find SERS substrates with high sensitivity and reproducibility. In this Research News article, we provide a focused review on the synthesis of monodispersed silver particles with a novel, highly roughened, “flower‐like” morphology by reducing silver nitrate with ascorbic acid in aqueous solutions. The nanometer‐scale surface roughness of the particles can provide several hot spots on a single particle, which significantly increases SERS enhancement. The incident polarization‐dependent SERS of individual particles is also studied. Although the different “hot spots” on a single particle can have a strong polarization dependency, the total Raman signals from an individual particle usually have no obvious polarization dependency. Moreover, these flower‐like silver particles can be measured by SERS with high enhancement several times, which indicates the high stability of the hot spots. Hence, the flower‐like silver particles here can serve as highly sensitive and reproducible SERS substrates.  相似文献   

20.
A method is developed to synthesize surface‐enhanced Raman scattering (SERS) materials capable of single‐molecule detection, integrated with a microfluidic system. Using a focused laser, silver nanoparticle aggregates as SERS monitors are fabricated in a microfluidic channel through photochemical reduction. After washing out the monitor, the aggregates are irradiated again by the same laser. This key step leads to full reduction of the residual reactants, which generates numerous small silver nanoparticles on the former nanoaggregates. Consequently, the enhancement ability of the SERS monitor is greatly boosted due to the emergence of new “hot spots.” At the same time, the influence of the notorious “memory effect” in microfluidics is substantially suppressed due to the depletion of surface residues. Taking these advantages, two‐step photoreduced SERS materials are able to detect different types of molecules with the concentration down to 10?13m . Based on a well‐accepted bianalyte approach, it is proved that the detection limit reaches the single‐molecule level. From a practical point of view, the detection reproducibility at different probing concentrations is also investigated. It is found that the effective single‐molecule SERS measurements can be raised up to ≈50%. This microfluidic SERS with high reproducibility and ultrasensitivity will find promising applications in on‐chip single‐molecule spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号