首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
P. Sannuti 《Automatica》1983,19(1):41-51
A new and direct approach to the analysis and design of high-gain feedback and cheap control problems is developed. Transformation of such singular problems to singular perturbation models of conventional type early at the onset of analysis or design allows a direct application of the readily available singular perturbation literature. The approach permits a simple characterization of (a) multivariable root loci under a high-gain feedback and (b) asymptotic behavior of optimal closed loop poles, state and control trajectories, performance index and optimal transfer function as the control cost coefficient in the performance index goes to zero.  相似文献   

2.
This paper presents the exponential stability of output‐based event‐triggered control for switched singular systems. An event‐triggered mechanism is introduced based on measure output, by employing the Lyapunov functional method and average dwell time approach, some sufficient conditions for exponential stability of the switched singular closed‐loop systems are derived. Furthermore, dynamic output feedback controller parameters are obtained. Lastly, a numerical example is given to illustrate the validity of the proposed solutions.  相似文献   

3.
Stability of active disturbance rejection control (ADRC) is analysed in the presence of unknown, nonlinear, and time-varying dynamics. In the framework of singular perturbations, the closed-loop error dynamics are semi-decoupled into a relatively slow subsystem (the feedback loop) and a relatively fast subsystem (the extended state observer), respectively. It is shown, analytically and geometrically, that there exists a unique exponential stable solution if the size of the initial observer error is sufficiently small, i.e. in the same order of the inverse of the observer bandwidth. The process of developing the uniformly asymptotic solution of the system reveals the condition on the stability of the ADRC and the relationship between the rate of change in the total disturbance and the size of the estimation error. The differentiability of the total disturbance is the only assumption made.  相似文献   

4.
Decentralised configuration with integral control action is the most commonly used control strategy in engineering practice. For decentralised integral control, a desired design target is to achieve closed-loop unconditional stability. Campo and Morari presented steady-state conditions, which can be applied to analyse unconditional stability for most multivariable processes. However, they also showed some processes for which the unconditional stability cannot be determined by only investigating the steady-state gain matrices of the processes. This paper presented an easy to use criterion to determine unconditional stability by using singular perturbation analysis and eigen-value sensitivity analysis. Based on the proposed criterion, the unconditional stability of all the examples presented by Campo and Morari can be easily determined. In the meantime, we proved a conjecture proposed by Campo and Morari (a necessary and sufficient condition for Integral Controllability) for up to all Three-Input and Three-Output systems. For higher dimensional systems, we proposed a new conjecture to simplify the verification of Campo and Morari’s conjecture.  相似文献   

5.
In this paper, singular perturbation margin (SPM) and generalised gain margin (GGM) are proposed as the classical phase margin and gain margin like stability metrics for nonlinear systems established from the view of the singular perturbation and the regular perturbation, respectively. The problem of SPM and GGM assessment of a nonlinear nominal system is formulated. The SPM and GGM formulations are provided as the functions of radius of attraction (ROA), which is introduced as a conservative measure of the domain of attraction (DOA). Furthermore, the ROA constrained SPM and GGM analysis are processed through two stages: (1) the SPM and GGM assessment for nonlinear systems at the equilibrium point, based on the SPM and GGM equilibrium theorems, including time-invariant and time-varying cases (Theorem 5.3, Theorem 5.2, Theorem 5.4 and Theorem 5.5); (2) the establishment of the relationship between the SPM or GGM and the ROA for nonlinear time-invariant systems through the construction of the Lyapunov function for the singularly perturbed model (Theorem 6.1 and Section 6.2.3).  相似文献   

6.
Inspired by the idea of multiple Lyapunov functions and the average dwell time, we address the stability analysis of nonautonomous continuous‐time switched systems. First, we investigate nonautonomous continuous‐time switched nonlinear systems and successively propose sufficient conditions for their (uniform) stability, global (uniform) asymptotic stability, and global (uniform) exponential stability, in which an indefinite scalar function is utilized to release the nonincreasing requirements of the classical multiple Lyapunov functions. Afterwards, by using multiple Lyapunov functions of quadratic form, we obtain the corresponding sufficient conditions for (uniform) stability, global (uniform) asymptotic stability, and global exponential stability of nonautonomous switched linear systems. Finally, we consider the computation issue of our current results for a special class of nonautonomous switched systems (ie, rational nonautonomous switched systems), associated with two illustrative examples.  相似文献   

7.
This paper is concerned with the transient performance improvement in tracking control problems for linear multivariable discrete‐time singular systems subject to actuators saturation. A composite nonlinear feedback control strategy is considered, and the resulting controller consists of a linear feedback law and a nonlinear feedback law without any switching element. The nonlinear term leads to a varying damping ratio of the closed‐loop system and yields a small overshoot as the output approaches the target reference, whereas the linear component is designed to achieve a quick response of the closed‐loop system. Two composite nonlinear feedback control laws by both state feedback and measurement output feedback are addressed. An illustrative example is included to show the validity of the obtained results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents an adaptive Lyapunov‐based controller with integral action for small‐scale helicopters carrying out airdrop missions. The proposed controller is designed via adaptive backstepping. Unlike the approximate modeling approaches, where the coupling effect of the helicopter is neglected, the proposed method is developed according to a complete dynamic model such that the closed‐loop helicopter system is guaranteed to be globally ultimately bounded. Two numerical simulations with airdrops are conducted to exemplify the merits of the proposed controller. Through simulation results, the proposed control method is shown to outperform the well‐known controller in Mahony and Hamel, Int. J. Robust Nonlinear Control, Vol. 14, No. (12), pp. 1035–1059 (2004). Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

9.
This paper presents an approach to the stability analysis of a class of nonlinear interconnected continuous‐time singular systems with arbitrary switching signals. This class of interconnected subsystems consists of unknown but bounded state delay and nonlinear terms, and each subsystem can be globally stable, unstable, or locally stable. By constructing a new Lyapunov‐like Krasovskii functional, sufficient conditions are derived and formulated to check the asymptotic (exponential) stability of such systems with arbitrary switching signals. Then, some new general criteria for asymptotic (exponential) stability with average dwell‐time switching signals are also established. The theoretical developments are demonstrated by two numerical simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Singular systems with matched Lipschitz perturbations and uncertainties are considered in this paper. Since continuous solutions of an impulse‐free singular system require continuous input signals, a two‐step continuous sliding‐mode control strategy to compensate matched Lipschitz perturbations and uncertainties in singular systems is proposed. Our suggested methodology is tested in a singular representation of a DC motor pendulum of relative degree two. The performance of the proposed strategy is assessed by comparing the accuracy, in both cases, with and without considering small noise in the output, obtained through other continuous sliding‐mode control, and reconstruction/compensation of perturbations and uncertainties techniques.  相似文献   

11.
This article deals with the problem of robust trajectory tracking for a scale model autonomous helicopter. A large class of uncertainties/disturbance is addressed, namely uncertain parameters and uniform time-varying tridimensional wind gusts occurring in the vicinity of the aircraft. Using an unknown input observer technique, it is shown that disturbances/uncertainties effects on the autonomous helicopter can be accurately reconstructed online. The analysis further extends to the design of a control law whose methodology takes the disturbance estimation procedure into account. Regarding passivity feature of the resulting model, a control law was designed using robust backstepping techniques. The approach proposed here significantly improves the performance of the control and the flight security by counteracting wind gusts in any flight phases. The framework proposed is applied to a non-linear six degree-of-freedom helicopter model. Consequently, a non-linear dynamic model of miniature helicopter is proposed, which focuses on the key effects in the dynamics of a miniature helicopter. Lyapunov stability analysis is then performed to keep the balance between robustness, short response time and large stability domain with a given security margin to guarantee obstacle avoidance during the tracking trajectory process. Simulations results are presented at the end of the article.  相似文献   

12.
This paper addresses the problem of finite‐time stabilization for a class of low‐order stochastic upper‐triangular nonlinear systems corrupted by unknown control coefficients. Unlike the relevant schemes, the control strategy draws into a dominate gain to cope with the deteriorative effects of both uncertain nonlinearities and unknown control coefficients without using traditional adaptive compensation method. Then, a state feedback controller is constructed by the adding a power integrator method and modified homogeneous domination approach, to ensure the finite‐time stability of the closed‐loop system. Finally, the effectiveness of proposed control strategy has been demonstrated by a simulation example.  相似文献   

13.
为了设计系统的保性能控制器,使得闭环系统是正则、具有因果关系且稳定和性能指标有一上界,研究了扰动是满足Lipschitz条件的一类非线性离散奇异时滞系统的保性能控制问题.应用线性矩阵不等式方法,给出了系统的保性能控制器存在的充分条件,并在这些条件可解时.给出了保性能控制器的表达式.最后通过仿真实例表明了所给方法的有效性。  相似文献   

14.
In this paper, we present the design and implementation of an autonomous flight control law for a small-scale unmanned aerial vehicle (UAV) helicopter. The approach is decentralized in nature by incorporating a newly developed nonlinear control technique, namely the composite nonlinear feedback control, together with dynamic inversion. The overall control law consists of three hierarchical layers, namely, the kernel control, command generator and flight scheduling, and is implemented and verified in flight tests on the actual UAV helicopter. The flight test results demonstrate that the UAV helicopter is capable of carrying out complicated flight missions autonomously.  相似文献   

15.
The issue of exponential stability analysis of continuous‐time switched singular systems consisting of a family of stable and unstable subsystems with time‐varying delay is investigated in this paper. It is very difficult to analyze the stability of such systems because of the existence of time‐delay and unstable subsystems. In this regard, on the basis of the free‐weighting matrix approach, by constructing the new Lyapunov‐like Krasovskii functional, and using the average dwell‐time approach, delay‐dependent sufficient conditions are derived and formulated in terms of LMIs to check the exponential stability of such systems. This paper also highlights the relationship between the average dwell‐time of the switched singular time‐delay system, its stability, exponential convergence rate of differential states, and algebraic states. Finally, a numerical example is given to confirm the analytical results and illustrate the effectiveness of the proposed strategy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
This paper aims to develop the stability theory for singular stochastic Markov jump systems with state‐dependent noise, including both continuous‐time and discrete‐time cases. The sufficient conditions for the existence and uniqueness of a solution to the system equation are provided. Some new and fundamental concepts such as non‐impulsiveness and mean square admissibility are introduced, which are different from those of other existing works. By making use of the ‐representation technique and the pseudo inverse E+ of a singular matrix E, sufficient conditions ensuring the system to be mean square admissible are established in terms of strict linear matrix inequalities, which can be regarded as extensions of the corresponding results of deterministic singular systems and normal stochastic systems. Practical examples are given to demonstrate the effectiveness of the proposed approaches. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
This paper gives the stability analysis of Filippov system with delay. Under the Filippov‐framework, we introduce a general type of Lyapunov‐Krasovskii functional (LKF) to derive the stability of delayed differential inclusions (DDIs), where the indefiniteness or positive definiteness of the derivative of LKF holds for almost everywhere along the trajectories of state solution. The proposed LKF of this paper generalizes the classic LKF whose derivative possesses negative definiteness or seminegative definiteness for everywhere. As a result, the stability, uniform stability, uniform asymptotic stability, and global exponential stability criteria of the trivial solution for DDI are established. Moreover, the developed LKF method is applied to solve the stabilization control issue of delayed neural networks, possessing discontinuous input‐output activation.  相似文献   

18.
The problem of observer‐based adaptive neural control via output feedback for a class of uncertain nonlinear singular systems is studied in this article. The nonlinear singular systems can be regarded as two subsystems that are coupled with each other: differential subsystem and algebraic subsystem. The differential systems can be nonstrict feedback structures. To guarantee that the singular system is regular and impulse‐free, two new conditions are proposed. By the conditions, the linear controller and observer, which are used to estimate the immeasurable state variables, are obtained. Then, an output feedback scheme through adaptive neural backstepping is proposed to ensure that all states of the closed‐loop system are semiglobally uniformly ultimately bounded and converge to a small neighborhood of the origin. Simulation examples illustrate the effectiveness of the presented method.  相似文献   

19.
This paper aims to derive stability conditions and an output‐feedback stabilization method for discrete‐time systems with a time‐varying state delay and nonlinear perturbation. With a new way of handling the Lyapunov stability criterion, linear matrix inequality conditions are obtained for estimating bounds on delay to ensure the asymptotic stability. Based on the conditions, a synthesis procedure is developed for finding stabilizing output‐feedback gains, which are formulated as direct design variables. Three numerical examples are employed to demonstrate the effectiveness and advantages of the proposed method. Copyright © 2010 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society  相似文献   

20.
In this paper, the problem of robust fault tolerant control for a class of singular systems subject to both time-varying state-dependent nonlinear perturbation and actuator saturation is investigated. A sufficient condition for the existence of a fixed-gain controller is first proposed which guarantees the regularity, impulse-free and stability of the closed-loop system under all possible faults. An optimization problem with LMI constraints is formulated to determine the largest contractively invariant ellipsoid. An adaptive fault tolerant controller is then developed to compensate for the failure effects on the system by estimating the fault and updating the design parameter matrices online. Both of these two controllers are in the form of a saturation avoidance feedback with the advantage of relatively small actuator capacities compared with the high gain counterpart. An example is included to illustrate the proposed procedures and their effectiveness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号