首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A robust mesh optimisation method is presented that directly enforces the resulting deformation to be orientation preserving. Motivated by aspects from mathematical elasticity, the energy functional of the mesh deformation can be related to a stored‐energy functional of a hyperelastic material. Formulating the functional in the principal invariants of the deformation gradient allows fine‐grained control over the resulting deformation. Solution techniques for the arising nonconvex and highly nonlinear system are presented. As existing preconditioners are not sufficient, a partial differential equation–based preconditioner is developed.  相似文献   

2.
Accurate sizing functions are crucial for efficient generation of high‐quality meshes, but to define the sizing function is often the bottleneck in complicated mesh generation tasks because of the tedious user interaction involved. We present a novel algorithm to automatically create high‐quality sizing functions for surface mesh generation. First, the tessellation of a Computer Aided Design (CAD) model is taken as the background mesh, in which an initial sizing function is defined by considering geometrical factors and user‐specified parameters. Then, a convex nonlinear programming problem is formulated and solved efficiently to obtain a smoothed sizing function that corresponds to a mesh satisfying necessary gradient constraint conditions and containing a significantly reduced element number. Finally, this sizing function is applied in an advancing front mesher. With the aid of a walk‐through algorithm, an efficient sizing‐value query scheme is developed. Meshing experiments of some very complicated geometry models are presented to demonstrate that the proposed sizing‐function approach enables accurate and fully automatic surface mesh generation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The quality of any numerical flowfield solution is inextricably linked to the quality of the mesh used. It is normally accepted that structured meshes are of higher quality than unstructured meshes, but are much more difficult to generate and, furthermore, for complex topologies a multiblock approach is required. This is the most resource‐intensive approach to mesh generation, since block structures, mesh point distributions, etc., need to be defined before the generation process, and so is seldom used in an industrial design loop, particularly where a novice user may be involved. This paper considers and presents two significant advances in multiblock mesh generation: the development of a fast, robust, and improved quality interpolation‐based generation scheme and a fully automatic multiblock optimization and generation method. A volume generation technique is presented based on a form of transfinite interpolation, but modified to include improved orthogonality and spacing control and, more significantly, an aspect ratio‐based smoothing algorithm that removes grid crossover and results in smooth meshes even for discontinuous boundary distributions. A fully automatic multiblock generation scheme is also presented, which only requires surface patch(es) and a target number of mesh cells. Hence, all user input is removed from the process, and a novice user is able to obtain a high‐quality mesh in a few minutes. It also means the code can be run in batch mode, or called as an external function, and so is ideal for incorporation into a design or optimization loop. To demonstrate the power and efficiency of the code, multiblock meshes of up to 256 million cells are presented for wings and rotors in hover and forward flight. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents an accurate and efficient computational strategy for the 3‐dimensional simulation of heterogeneous structures with unreinforced masonry components. A mesoscale modelling approach is employed for the unreinforced masonry parts, whereas other material components are modelled independently with continuous meshes. The generally nonmatching meshes of the distinct domains are coupled with the use of a mesh tying method. The physical interaction between the components is captured with the use of zero‐thickness cohesive interface elements. This strategy enables the optimisation of the individual meshes leading to increased computational efficiency. Furthermore, the elimination of the mesh compatibility requirement allows the 3‐dimensional modelling of complex heterogeneous structures, ensuring accurate representation of each component's nonlinear behaviour and their interaction. Numerical examples, including a comparative analysis on the elastic and nonlinear response of a masonry bridge considering arch‐backfill interaction and the nonlinear simulation of a multileaf wall, are presented to show the unique features of the proposed strategy and its predictive power in comparison with experimental and numerical results found in the literature.  相似文献   

5.
The paper presents a parallel tetrahedral mesh generation approach based on recursive bidivisions using triangular surfaces. Research was conducted for addressing issues concerning mesh generation reliability and element quality. A novel procedure employing local modification techniques is proposed for repairing the intersecting interdomain mesh instead of directly repeating the bidivision procedure, which improves the robustness of the complete meshing procedure significantly. In addition, a new parallel quality improvement scheme is suggested for optimizing the distributed volume meshes. The scheme is free of any communication cost and highly efficient. Finally, mesh experiments of hundreds of millions of elements are performed to demonstrate the reliability, effectiveness and efficiency of the proposed method and its potential applications to large‐scale simulations of complex aerodynamics models. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, a general framework of practical two‐dimensional quadrilateral remeshing, which includes the determination of remeshing time, automatic quadrilateral mesh generation, and data transfer process, will be formulated. In particular, the current work contains new algorithms of mesh density specification according to the distribution of effective strain‐rate gradients, mesh density smoothing by fast Fourier transform (FFT) and low‐pass filtering techniques, coarsening it by node placement scheme, and a modified Laplacian mesh smoothing technique. The efficiency of the developed remeshing scheme was tested through three practical two‐dimensional metal forming simulations. The results clearly indicate that the algorithms proposed in this study make it possible to simulate two‐dimensional metal forming problems efficiently and automatically. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

7.
There has been some degree of success in all‐hexahedral meshing. Standard methods start with the object geometry defined by means of an all‐quadrilateral mesh, followed by the use of the combinatorial dual to the mesh in order to define the internal connectivities among elements. For all of the known methods using the dual concept, it is necessary to first prevent or eliminate self‐intersecting (SI) dual lines of the given quadrilateral mesh. The relevant features of SI lines are studied, giving a method to remove them, which avoids deforming the original geometry. Some examples of resulting meshes are shown where the current meshing method has been successfully applied. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

8.
We present a new shape measure for tetrahedral elements that is optimal in that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. Using this shape measure, we formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst‐quality element in the mesh. We review the optimization techniques used with each objective function and present experimental results that demonstrate the effectiveness of the mesh improvement methods. We show that a combined optimization approach that uses both objective functions obtains the best‐quality meshes for several complex geometries. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

9.
A new unstructured mesh coarsening algorithm has been developed for use in conjunction with multilevel methods. The algorithm preserves geometrical and topological features of the domain, and retains a maximal independent set of interior vertices to produce good coarse mesh quality. In anisotropic meshes, vertex selection is designed to retain the structure of the anisotropic mesh while reducing cell aspect ratio. Vertices are removed incrementally by contracting edges to zero length. Each vertex is removed by contracting the edge that maximizes the minimum sine of the dihedral angles of cells affected by the edge contraction. Rarely, a vertex slated for removal from the mesh cannot be removed; the success rate for vertex removal is typically 99.9% or more. For two‐dimensional meshes, both isotropic and anisotropic, the new approach is an unqualified success, removing all rejected vertices and producing output meshes of high quality; mesh quality degrades only when most vertices lie on the boundary. Three‐dimensional isotropic meshes are also coarsened successfully, provided that there is no difficulty distinguishing corners in the geometry from coarsely‐resolved curved surfaces; sophisticated discrete computational geometry techniques appear necessary to make that distinction. Three‐dimensional anisotropic cases are still problematic because of tight constraints on legal mesh connectivity. More work is required to either improve edge contraction choices or to develop an alternative strategy for mesh coarsening for three‐dimensional anisotropic meshes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
This paper describes a novel approach to improve the quality of non‐manifold hexahedral meshes with feature preservation for microstructure materials. In earlier works, we developed an octree‐based isocontouring method to construct unstructured hexahedral meshes for domains with multiple materials by introducing the notion of material change edge to identify the interface between two or more materials. However, quality improvement of non‐manifold hexahedral meshes is still a challenge. In the present algorithm, all the vertices are categorized into seven groups, and then a comprehensive method based on pillowing, geometric flow and optimization techniques is developed for mesh quality improvement. The shrink set in the modified pillowing technique is defined automatically as the boundary of each material region with the exception of local non‐manifolds. In the relaxation‐based smoothing process, non‐manifold points are identified and fixed. Planar boundary curves and interior spatial curves are distinguished, and then regularized using B‐spline interpolation and resampling. Grain boundary surface patches and interior vertices are improved as well. Finally, the optimization method eliminates negative Jacobians of all the vertices. We have applied our algorithms to two beta titanium data sets, and the constructed meshes are validated via a statistics study. Finite element analysis of the 92‐grain titanium is carried out based on the improved mesh, and compared with the direct voxel‐to‐element technique. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This paper introduces the use of moving least‐squares (MLS) approximations for the development of high‐order finite volume discretizations on unstructured grids. The field variables and their successive derivatives can be accurately reconstructed using this mesh‐free technique in a general nodal arrangement. The methodology proposed is used in the construction of two numerical schemes for the shallow water equations on unstructured grids: a centred Lax–Wendroff method with added shock‐capturing dissipation, and a Godunov‐type upwind scheme, with linear and quadratic reconstructions. This class of mesh‐free techniques provides a robust and general approximation framework which represents an interesting alternative to the existing procedures, allowing, in addition, an accurate computation of the viscous fluxes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
In order to improve the accuracy of the mixed element for irregular meshes, a penalty‐equilibrating 3D‐mixed element based on the Hu–Washizu variational principle has been proposed in this paper. The key idea in this work is to introduce a penalty term into the Hu–Washizu three‐field functional, which can enforce the stress components to satisfy the equilibrium equations in a weak form. Compared with the classical hybrid and mixed elements, this technique can efficiently reduce the sensitivity of the element to mesh distortion. The reason for the better results of this penalty technique has been investigated by considering a simple 2D problem. From this investigation, it has been found that the penalty parameter here plays the role of a scaling factor to reduce the influence of the parasitic strain or stress, which is similar to the devised selective scaling factor proposed by Sze. Furthermore, compared with the hybrid stress element, the proposed element based on the three‐field variational principle is more suitable for material non‐linear analysis. Numerical examples have demonstrated the improved performance of the present element, especially in stress computation when FEM meshes are irregular. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
We describe a new mesh smoothing method that consists of minimizing the sum of squared element volumes over the free vertex positions. To the extent permitted by the fixed vertices and mesh topology, the resulting mesh elements have uniformly distributed volumes. In the case of a triangulation, uniform volume implies well‐shaped triangles. If a graded mesh is required, the element volumes may be weighted by centroidal values of a sizing function, resulting in a mesh that conforms to the required vertex density. The method has both a local and a global implementation. In addition to smoothing, the method serves as a simple parameter‐free means of untangling a mesh with inverted elements. It applies to all types of meshes, but we present test results here only for planar triangle meshes. Our test results show the new method to be fast, superior in uniformity or conformity to a sizing function, and among the best methods in terms of triangle shape quality. We also present a new angle‐based method that is simpler and more effective than alternatives. This method is directly aimed at producing well‐shaped triangles and is particularly effective when combined with the volume‐based method. It also generalizes to anisotropic mesh smoothing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
In spite of significant advancements in automatic mesh generation during the past decade, the construction of quality finite element discretizations on complex three‐dimensional domains is still a difficult and time demanding task. In this paper, the partition of unity framework used in the generalized finite element method (GFEM) is exploited to create a very robust and flexible method capable of using meshes that are unacceptable for the finite element method, while retaining its accuracy and computational efficiency. This is accomplished not by changing the mesh but instead by clustering groups of nodes and elements. The clusters define a modified finite element partition of unity that is constant over part of the clusters. This so‐called clustered partition of unity is then enriched to the desired order using the framework of the GFEM. The proposed generalized finite element method can correctly and efficiently deal with: (i) elements with negative Jacobian; (ii) excessively fine meshes created by automatic mesh generators; (iii) meshes consisting of several sub‐domains with non‐matching interfaces. Under such relaxed requirements for an acceptable mesh, and for correctly defined geometries, today's automated tetrahedral mesh generators can practically guarantee successful volume meshing that can be entirely hidden from the user. A detailed technical discussion of the proposed generalized finite element method with clustering along with numerical experiments and some implementation details are presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Implementation of Dirichlet boundary conditions in mesh‐free methods is problematic. In Wagner and Liu (International Journal for Numerical Methods in Engineering 2001; 50 :507), a hierarchical enrichment technique is introduced that allows a simple implementation of the Dirichlet boundary conditions. In this paper, we provide some error analysis for the hierarchical enrichment mesh‐free technique. We derive optimal order error estimates for the hierarchical enrichment mesh‐free interpolants. For one‐dimensional elliptic boundary value problems, we can directly apply the interpolation error estimates to obtain error estimates for the mesh‐free solutions. For higher‐dimensional problems, derivation of error estimates for the mesh‐free solutions depends on the availability of an inverse inequality. Numerical examples in 1D and 2D are included showing the convergence behaviour of mesh‐free interpolants and mesh‐free solutions when the hierarchical enrichment mesh‐free technique is employed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

16.
In the present study, a hexahedral mesh generator was developed for remeshing in three‐dimensional metal forming simulations. It is based on the master grid approach and octree‐based refinement scheme to generate uniformly sized or locally refined hexahedral mesh system. In particular, for refined hexahedral mesh generation, the modified Laplacian mesh smoothing scheme mentioned in the two‐dimensional study (Part I) was used to improve the mesh quality while also minimizing the loss of element size conditions. In order to investigate the applicability and effectiveness of the developed hexahedral mesh generator, several three‐dimensional metal forming simulations were carried out using uniformly sized hexahedral mesh systems. Also, a comparative study of indentation analyses was conducted to check the computational efficiency of locally refined hexahedral mesh systems. In particular, for specification of refinement conditions, distributions of effective strain‐rate gradient and posteriori error values based on a Z2 error estimator were used. From this study, it is construed that the developed hexahedral mesh generator can be effectively used for three‐dimensional metal forming simulations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

17.
Global optimisation for manufacturing problems is mandatory for obtaining versatile benefits to facilitate modern industry. This paper deals with an original approach of globally optimising tool paths to CNC-machine sculptured surfaces. The approach entails the development of a fully automated manufacturing software interface integrated by a non-conventional genetic/evolutionary algorithm to enable intelligent machining. These attributes have been built using already existing practical machining modelling tools such as CAM systems so as to deliver a truly viable computer-aided manufacturing solution. Since global optimisation is heavily based on the formulation of the problem, emphasis has been given to the definition of optimisation criteria as crucial elements for representing performance. The criteria involve the machining error as a combined effect of chord error and scallop height, the tool path smoothness and productivity. Experiments have been designed considering several benchmark sculptured surfaces as well as tool path parameters to validate the aforementioned criteria. The new approach was implemented to another sculptured surface which has been extensively tested by previous research works. Results were compared to those available in the literature and it was found that the proposed approach can indeed constitute a promising and trustworthy technique for the global optimisation of sculptured surface CNC tool paths.  相似文献   

18.
This paper presents a new procedure to improve the quality of triangular meshes defined on surfaces. The improvement is obtained by an iterative process in which each node of the mesh is moved to a new position that minimizes a certain objective function. This objective function is derived from algebraic quality measures of the local mesh (the set of triangles connected to the adjustable or free node). If we allow the free node to move on the surface without imposing any restriction, only guided by the improvement of the quality, the optimization procedure can construct a high‐quality local mesh, but with this node in an unacceptable position. To avoid this problem the optimization is done in the parametric mesh, where the presence of barriers in the objective function maintains the free node inside the feasible region. In this way, the original problem on the surface is transformed into a two‐dimensional one on the parametric space. In our case, the parametric space is a plane, chosen in terms of the local mesh, in such a way that this mesh can be optimally projected performing a valid mesh, that is, without inverted elements. Several examples and applications presented in this work show how this technique is capable of improving the quality of triangular surface meshes. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
This paper details a multigrid‐accelerated cut‐cell non‐conforming Cartesian mesh methodology for the modelling of inviscid compressible and incompressible flow. This is done via a single equation set that describes sub‐, trans‐, and supersonic flows. Cut‐cell technology is developed to furnish body‐fitted meshes with an overlapping mesh as starting point, and in a manner which is insensitive to surface definition inconsistencies. Spatial discretization is effected via an edge‐based vertex‐centred finite volume method. An alternative dual‐mesh construction strategy, similar to the cell‐centred method, is developed. Incompressibility is dealt with via an artificial compressibility algorithm, and stabilization achieved with artificial dissipation. In compressible flow, shocks are captured via pressure switch‐activated upwinding. The solution process is accelerated with full approximation storage (FAS) multigrid where coarse meshes are generated automatically via a volume agglomeration methodology. This is the first time that the proposed discretization and solution methods are employed to solve a single compressible–incompressible equation set on cut‐cell Cartesian meshes. The developed technology is validated by numerical experiments. The standard discretization and alternative methods were found equivalent in accuracy and computational cost. The multigrid implementation achieved decreases in CPU time of up to one order of magnitude. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

20.
A computational procedure for remapping material state information from one finite element mesh to another is described. The procedure is useful in connection with evolving meshes for inelastic problems, as for example occur in the context of fracture simulation and adaptive mesh refinement. The proposed method is based on weak enforcement of equality between corresponding fields on the two meshes, where piecewise‐constant fields on both meshes are generalized from the quadrature‐point values. The essential algorithmic problem is that of calculating the volume partition of an arbitrary convex region with respect to a covering set of disjoint convex regions. Instead of geometrically resolving the associated intersections, the problem is herein approximated by a constrained optimization problem, which may be readily and efficiently solved computationally. This formulation is a main contribution of the paper. Computational examples are given that illustrate the effectiveness of the proposed procedure. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号