首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of formation temperature on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene/carbon nanotube (UHMWPE/CNT) fiber specimens is investigated. Gel solutions of UHMWPE/CNT with various CNT contents were gel‐spun at the optimum concentration and temperature but were cooled at varying formation temperatures in order to improve the ultradrawing and tensile properties of the UHMWPE/CNT composite fibers. The achievable draw ratio (Dra) values of UHMWPE/CNT as‐prepared fibers reach a maximum when they are prepared with the optimum CNT content and formation temperature. The Dra value of UHMWPE/CNT as‐prepared fibers produced using the optimum CNT content and formation temperature is about 33% higher than that of UHMWPE as‐prepared fibers produced using the optimum concentration and formation temperature. The percentage crystallinity (Wc) and melting temperature (Tm) of UHMWPE/CNT as‐prepared fiber specimens increase significantly as the formation temperature increases. In contrast, Wc increases but Tm decreases significantly as the CNT content increases. Dynamic mechanical analysis of UHMWPE and UHMWPE/CNT fiber specimens exhibits particularly high α‐transition and low β‐transition, wherein the peak temperatures of α‐transition and β‐transition increase dramatically as the formation temperature increases and/or CNT content decreases. In order to understand these interesting drawing, thermal and dynamic mechanical properties of the UHMWPE and UHMWPE/CNT as‐prepared fiber specimens, birefringence, morphological and tensile studies of as‐prepared and drawn fibers were carried out. Possible mechanisms accounting for these interesting properties are proposed. Copyright © 2010 Society of Chemical Industry  相似文献   

2.
An investigation of the influence of the contents of original and modified attapulgite (ATP) on the ultradrawing properties of ultrahigh‐molecular‐weight polyethylene (UHMWPE)/ATP (FAx) and UHMWPE/modified ATP (FAmx) as‐prepared fibers is reported. Similar to what is found for the orientation factor values, the achievable draw ratios (Dra) of the FAx and FAmx as‐prepared fibers approach a maximum value as the original ATP and/or modified ATP contents reach their corresponding optimum values. The maximum Dra value obtained for FAmx as‐prepared fiber specimens is significantly higher than that for FAx as‐prepared fiber specimens prepared at the optimum original ATP content. Similar to what is found for the orientation factors and achievable drawing properties, the tensile strength (σf) and initial modulus (E) of both drawn F2Ax and F2Amx fiber series specimens with a fixed draw ratio reach maximum values as the original and/or modified ATP contents approach the optimum values, respectively. The σf and E values of the F2Amx fiber specimens are always significantly higher than those of the corresponding F2Ax fiber specimens prepared at the same draw ratios and ATP contents but without being modified. To understand the interesting ultradrawing, orientation and tensile properties of FAx and FAmx fiber specimens, Fourier transform infrared spectral, specific surface area, transmission electron microscopic and elemental analyses of the original and modified ATPs were performed. Copyright © 2012 Society of Chemical Industry  相似文献   

3.
The influences of the dispersion level of carbon nanotubes (CNTs) and functionalized CNTs on the transmittance properties of ultrahigh‐molecular weight polyethylene (UHMWPE) gel solutions and on ultradrawing properties of their as‐prepared fibers are reported. The transmittance properties suggest that the dispersion level of functionalized CNTs in UHMWPE/functionalized CNTs gel solution is significantly better than plain CNTs in UHMWPE/CNTs gel solutions. The orientation factors, achievable draw ratios, tensile strength (σf), and modulus (E) values of UHMWPE/CNTs (FxCy) and UHMWPE/functionalized CNTs (FxCf‐y) as‐prepared fiber specimens reached a maximum value as their CNT and functionalized CNT contents approached optimum contents at 0.00015 and 0.0001 wt%, respectively. The σf and E values of both FxC0.0012 and FxCf‐0.001 series fiber specimens prepared at their optimum CNT and functionalized CNT contents reached another maximum as their UHMWPE approached optimum UHMWPE concentration of 1.7 wt%. Possible reasons accounting for these interesting properties are proposed. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
Systemic investigation of the influence of the plain and functionalized carbon nanotube (CNT) contents on the ultradrawing properties of ultrahigh molecular weight polyethylene/carbon nanotubes (UHMWPE/CNTs, FCy) and UHMWPE/functionalized CNTs (FCfx‐y) as‐prepared fibers are reported. In a way similar to those found for the orientation factor values, the achievable draw ratios (Dra) of the FCy and FCfx‐y as‐prepared fibers approached a maximum value as their CNT and/or functionalized CNT contents reached their corresponding optimum values. The maximum Dra values obtained for FCfx‐0.001 as‐prepared fiber specimens prepared at varying maleic anhydride grafted polyethylene (PE‐g‐MAH)/modified CNTs weight ratios were significantly higher that of the FC0.0015 as‐prepared fiber specimen prepared at the optimum plain CNT content. Tensile property analysis further suggested that excellent orientation and tensile properties of the drawn FCy and FCfx‐y fibers can be obtained by ultradrawing the fibers prepared at their optimum plain CNT and/or functionalized CNT contents. To understand the interesting orientation, ultradrawing and tensile properties of FCy and FCfx‐y fiber specimens, FTIR, specific surface area, and SEM morphology analysis of the plain and functionalized CNTs were performed in this study. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

5.
The drawing and ultimate tensile properties of the modified PA 6 (MPA) fiber specimens prepared at varying drawing temperature were systematically investigated, wherein the MPA resins were prepared by reactive extrusion of PA 6 with the compatibilizer precursor (CP). At any fixed drawing temperature, the achievable draw ratio (Dra) values of MPA as‐spun fiber specimens increase initially with increasing CP contents, and then approach a maximum value, as their CP contents are close to the 5 wt% optimum value. The maximum Dra values obtained for MPA as‐spun fiber specimens prepared at the optimum CP content reach another maximum as their drawing temperatures approach the optimum drawing temperature at 120°C. The tensile and birefringence values of PA 6 and MPA fiber specimens improve consistently as their draw ratios increase. Similar to those found for their achievable drawing properties, the ultimate tensile and birefringence values of MPA fiber specimens approach a maximum value, as their CP contents and drawing temperatures approach the 5 wt% and 120°C optimum values, respectively. Investigations including Fourier transform infrared, melt shear viscosity, gel content, thermal and wide angle X‐ray diffraction experiments were performed on the MPA resin and/or fiber specimens to clarify the optimum CP content and possible deformation mechanisms accounting for the interesting drawing, birefringence, and ultimate tensile properties found for the MPA fiber specimens prepared in this study. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

6.
Ultrahigh molecular weight polyethylene (UHMWPE)/nanosilica (F2Sy) and UHMWPE/modified nanosilica (F2Smxy) as‐prepared fibers were prepared by spinning of F2Sy and F2Smxy gel solutions, respectively. Modified nanosilica particles were prepared by grafting maleic anhydride grafted polyethylenes onto nanosilica particles. The achievable draw ratios (Dra) of F2Sy and F2Smxy as‐prepared fibers approached a maximal value as the original and modified nanosilica contents reached corresponding optimum values; the maximal Dra value obtained for F2Smxy as‐prepared fiber specimens was significantly higher than that of the F2Sy as‐prepared fiber specimens prepared at the optimum nanosilica content. The melting temperature and evaluated lamellar thickness values of F2Sy and F2Smxy as‐prepared fiber series specimens decrease, but crystallinity values increase significantly, as their original and modified nanosilica contents respectively increase. Similar to the achievable drawing properties of the as‐prepared fibers, the orientation factor, tensile strength (σf) and initial modulus (E) values of both drawn F2Sy and F2Smxy fiber series specimens with a fixed draw ratio reach a maximal value as the original and/or modified nanosilica contents approach the optimum values; the σf and E values of the drawn F2Smxy fiber specimens are significantly higher than those of the corresponding drawn F2Sy fiber specimens prepared at the same draw ratios and nanosilica contents but without being modified. To understand the interesting ultradrawing, thermal, orientation and tensile properties of F2Sy and F2Smxy fiber specimens, Fourier transform infrared, specific surface area and transmission electron microscopy analyses of the original and modified nanosilica were performed in this study. © 2012 Society of Chemical Industry  相似文献   

7.
Ultradrawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE) composite fibers were successfully improved by the addition of nanoalumina (NAL), acid treated nanoalumina (ATNAL), and/or functionalized nanoalumina (FNAL). As evidenced by FTIR and TEM analyses, maleic anhydride grafted polyethylene (PEg‐MAH) molecules were successfully grafted onto ATNAL fillers. The specific surface areas of FNAL fillers reached a maximal value at 516 m2/g, as they were modified using an optimal weight ratio of PEg‐MAH to ATNAL at 8. Achievable draw ratio (Dra) values of UHMWPE/NAL (F100Ay), UHMWPE/ATNAL (F100Ax%‐8‐y) and/or UHMWPE/FNAL (F100Ax%‐8FPEzy) as‐prepared fibers approached a maximal value as NAL, ATNAL, and/or FNAL contents reached an optimal value at 0.1, 0.1, and 0.075 phr, respectively. The maximal Dra values of F100Ax%‐8FPEz0.075 as‐prepared fiber specimens were significantly higher than those of F100A0.1 and F100Ax%‐8‐0.1 as‐prepared fiber specimens. In which, the maximal Dra values obtained for F100Ax%‐8FPEz0.075 as‐prepared fibers reached another maximal value as FNAL fillers were modified using an optimal weight ratio of PEg‐MAH to ATNAL at 8. The ultimate tensile strength value of F100A2%‐8FPE80.075 drawn fiber reached 6.4 GPa, which was about 2.4 times of that of the UHMWPE drawn fibers prepared at the same optimal UHMWPE concentration and drawing condition. POLYM. ENG. SCI., 55:2205–2214, 2015. © 2015 Society of Plastics Engineers  相似文献   

8.
Innovative supercritical carbon dioxide (scCO2)-assisted ultrahigh-molecular-weight-polyethylene (UHMWPE)/modified bacterial cellulose (MBC) as-spun fibers were found to display substantially lower dynamic transition temperatures than those acquired for scCO2-assisted UHMWPE or UHMWPE/MBC as-spun fibers prepared without scCO2-assistance or incorporation of MBC nanofibers. Multiple-step drawing methods were first-time applied to these finely ''relaxed'' scCO2-assisted UHMWPE/MBC fibers and considerably improved their achievable draw ratios (Dras), orientation factor (fos), and tensile tenacities (σtts). The best five-step drawn scCO2UHMWPE/MBC fiber displayed a particularly high σtt of 135 g d−1, which was ~35, ~3.75, and ~1.7 fold of σtts acquired for good steel fiber and the most appropriate single-step drawn scCO2-assisted UHMWPE and UHMWPE/MBC fibers, respectively. The particularly high Dras, fo, and σtts acquired for the best multiple-step drawn scCO2-assisted UHMWPE/MBC fibers is ascribed to their more ''relaxed'' UHMWPE structures, thinner lamellae, and successive increased drawing temperature in the multiple-step drawing processes.  相似文献   

9.
The drawing and ultimate tenacity properties of the Polyamide 6 (PA6)/Attapulgite (ATP) composite fiber specimens prepared at varying modified ATP (mATP) contents and drawing condition were systematically investigated. As evidenced by Fourier transform infrared (FTIR) and morphological analysis, demarcated translucent resins were found firmly attached on the surfaces of ATP nanofibers. The specific surface areas of the mATP specimens reached a maximum value at 381 m2/g as the weight ratios of silane coupling agents to ATP nanofibers reached an optimum value at 1.0. The percentage crystallinity and melt shear viscosity values measured at varying shear rates of PA6x(mATP)y specimens increased consistently as their mATP contents increased. In contrast, melting temperatures of PA6x(mATP)y specimens reduced slightly as their mATP contents increased. At a fixed drawing temperature and rate, the achievable draw ratio (Dra) values of PA6x(mATP)y as‐spun fiber specimens approach a maximum value, as their mATP contents are close to the 0.2 wt % optimum value. The maximum Dra values obtained for PA699.8(mATP)0.2 as‐spun fiber specimens reached another maximum, when their drawing temperatures and rates approached the optimum values at 120°C and 50 mm/min, respectively. At a fixed draw ratio, the tenacity values of PA6x(mATP)y drawn fiber specimens drawn at the optimum drawing temperature and rate reached a maximum value, as their mATP contents approached the 0.2 wt % optimum value. Possible reasons accounting for the interesting morphological, specific surface area, drawing, orientation, and ultimate tenacity properties found for the PA6x(mATP)y fiber specimens are proposed. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
The influence of calcium chloride (CaCl2) contents on the drawing and tensile properties of polyamide 6 (PA6)/CaCl2 composite fibers prepared at varying drawing temperatures were investigated. At any fixed drawing temperature, the achievable draw ratio (Dra) values of PA6x(CaCl2)y as-spun fiber specimens approach a maximum value, as their CaCl2 contents are close to the 3 wt% optimum value. The maximum Dra values obtained for PA6x(CaCl2)y as-spun fiber specimens prepared at the optimum CaCl2 content reach another maximum as their drawing temperatures approach the optimum drawing temperature at 120 °C. The initial modulus, tensile strength and birefringence values of the PA6 and PA6x(CaCl2)y fiber specimens were found to improve consistently with Dra or with drawing temperatures when they were stretched to a fixed Dra. Similar to those found for their achievable drawing properties, the ultimate initial modulus, tensile strength and birefringence values of PA6x(CaCl2)y fiber specimens approach a maximum value, as their CaCl2 contents and drawing temperatures approach the 3 wt% and 120 °C optimum values, respectively. Experiments including thermal, FTIR, melt shear viscosity and wide angle X-ray diffraction experiments were performed on the PA6x(CaCl2)y resin and/or fiber specimens to clarify the possible reasons accounting for the interesting drawing, tensile and birefringence properties found for the PA6x(CaCl2)y fiber specimens.  相似文献   

11.
This study systematically investigated the drawing and ultimate tenacity properties of the Nylon 6 (NY6)/nylon 6 clay (NYC) composite fiber specimens prepared at varying NYC contents and drawing temperatures. The achievable draw ratio (Dra) values of NY6x(NYC)y as‐spun fiber specimens initially increase in conjunction with NYC content, and then approach a maximum value, as their NYC contents and drawing temperature approach the 0.5 wt% and 120°C, respectively. The percentage crystallinity (Xc) values of NY6x(NYC)y as‐spun fiber specimens increased significantly, as their NYC contents increased from 0 to 2 wt%. As revealed by high power wide angle X‐ray diffraction analysis, α form NY6 crystals grew at the expense of γ form NY6 crystals originally present in NY6x(NYC)y as‐spun fiber specimens as their draw ratios increased. The ultimate modulus, tenacity, and orientation factor values of NY6x(NYC)y fiber specimens approach a maximum value, as their NYC contents and drawing temperatures approach the 0.5 wt% and 120°C optimum values, respectively. The thermal and melt shear viscosity experiments were performed on NY6x(NYC)y resins and/or fiber specimens to determine the optimum NYC content and possible deformation mechanisms accounting for the interesting drawing, orientation, and ultimate tenacity properties found above. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

12.
This is the first investigation to report the processing and properties of ultrahigh molecular weight polyethylene (UHMWPE)/functionalized activated nanocarbon (FANC) gel solutions with the aid of supercritical carbon dioxide (scCO2). The ultradrawing and ultimate tensile properties of scCO2UHMWPE and scCO2UHMWPE/FANC fibers were found to improve considerably compared to those of UHMWPE and UHMWPE/FANC fibers prepared in the conventional way. The maximum achievable draw ratio obtained for the optimal scCO2UHMWPE/FANC fibers drawn at 95°C reached 445. The highest tensile tenacity (σf) of the fully drawn scCO2UHMWPE/FANC fiber reached an extraordinary high value of 104 g/d, which is about 3.2 and 1.1 times of that of the optimal UHMWPE and UHMWPE/FANC fully drawn fibers, respectively. The σf obtained for the optimally fully drawn scCO2UHMWPE/FANC fiber is about 25 times of those of steel fibers and is the highest tensile tenacity ever reported for single‐stage drawn polymeric fibers. Considerably lower dynamic transition temperatures and evaluated thinner crystal lamellae nucleated off of extended chains or FANC nucleants were found for as‐prepared scCO2UHMWPE and scCO2UHMWPE/FANC fibers compared with UHMWPE and UHMWPE/FANC fibers, respectively. Specific surface area, morphological, and Fourier transform infrared analyses of the activated nanocarbon (ANC), acid‐treated activated nanocarbon (ATANC) and FANC nanofillers and investigation of thermal, morphological, and orientation factor properties of the as‐prepared and drawn UHMWPE, UHMWPE/FANC, scCO2UHMWPE, and scCO2UHMWPE/FANC fibers were performed to understand the remarkable ultradrawing, dynamic transition, and ultimate tensile properties obtained for scCO2UHMWPE and scCO2UHMWPE/FANC fibers. POLYM. ENG. SCI., 59:1462–1471 2019. © 2019 Society of Plastics Engineers  相似文献   

13.
The concentrations and temperatures of ultrahigh‐molecular‐weight polyethylene (UHMWPE) gel solutions exhibited a significant influence on their rheological and spinning properties. The shear viscosities of UHMWPE solutions increased consistently with increasing concentrations at a constant temperature above 80°C. Tremendously high shear viscosities of UHMWPE gel solutions were found as the temperatures reached 120–140°C, at which their shear viscosity values approached the maximum. The spinnable solutions are those gel solutions with optimum shear viscosities and relatively good homogeneity in nature. Moreover, the gel solution concentrations and spinning temperatures exhibited a significant influence on the drawability and microstructure of the as‐spun fibers. At each spinning temperature, the achievable draw ratios obtained for as‐spun fibers prepared near the optimum concentration are significantly higher than those of as‐spun fibers prepared at other concentrations. The critical draw ratio of the as‐spun fiber prepared at the optimum concentration approached a maximum value, as the spinning temperature reached the optimum value of 150°C. Further investigations indicated that the best orientation of the precursors of shish‐kebab‐like entities, birefringence, crystallinity, thermal and tensile properties were always accompanied with the as‐spun fiber prepared at the optimum concentration and temperature. Similar to those found for the as‐spun fibers, the birefringence and tensile properties of the draw fibers prepared at the optimum condition were always higher than those of drawn fibers prepared at other conditions but stretched to the same draw ratio. Possible mechanisms accounting for these interesting phenomena are proposed.  相似文献   

14.
The carbon nanotubes (CNTs) contents, ultrahigh‐molecular‐weight polyethylene (UHMWPE) concentrations and temperatures of UHMWPE, and CNTs added gel solutions exhibited significant influence on their rheological and spinning properties and the drawability of the corresponding UHMWPE/CNTs as‐prepared fibers. Tremendously high shear viscosities (ηs) of UHMWPE gel solutions were found as the temperatures reached 140°C, at which their ηs values approached the maximum. After adding CNTs, the ηs values of UHMWPE/CNTs gel solutions increase significantly and reach a maximum value as the CNTs contents increase up to a specific value. At each spinning temperature, the achievable draw ratios obtained for UHMWPE as‐prepared fibers prepared near the optimum concentration are significantly higher than those of UHMWPE as‐prepared fibers prepared at other concentrations. After addition of CNTs, the achievable draw ratios of UHMWPE/CNTs as‐prepared fibers prepared near the optimum concentration improve consistently and reach a maximum value as their CNTs contents increase up to an optimum value. To understand these interesting drawing properties of the UHMWPE and UHMWPE/CNTs as‐prepared fibers, the birefringence, thermal, morphological, and tensile properties of the as‐prepared and drawn fibers were investigated. Possible mechanisms accounting for these interesting properties are proposed. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

15.
The average concentrations of negative air ions (Cion?) emitted from tourmaline (T), bamboo charcoal (B) particles, and tourmaline/bamboo charcoal (T/B) compounds containing polypropylene (PP) and ethylene propylene diene terpolymer/polypropylene (EPDM/PP) composite specimens under varying testing conditions were investigated in this study. The Cion? values emitted from T or B filled PP and EPDM/PP composite specimens reached a maximum value as their T or B contents approached the 5 and 3 wt % optimum values, respectively. In contrast, the Cion? values of T/B compounds filled PP and EPDM/PP composite specimens were significantly higher than their theoretical Cion? values estimated using the “simple mixing rule,” and reached a maximum value as the weight ratio of T to B reaches an optimum value. At this optimum T/B weight ratio, the Cion? values of T/B compounds filled PP and EPDM/PP composite specimens reached another maximum as their total compound loadings reached the optimum loading of 6 and 4 wt %, respectively. The Cion? values of the PP/T/B and EPDM/PP/T/B specimens increased significantly as they were tested under dynamic mode or by increasing the testing temperatures. The T and/or T/B powders filled PP and EPDM/PP specimens exhibited significantly higher tensile strength (σf) and elongation at break (εf) values than did the B filled PP and EPDM/PP specimens with the same filler loadings, respectively. Energy dispersive X‐rays, particle size, and SEM morphology analysis of the filler particles present in the T, B, and T/B filled composite specimens were performed to understand these interesting negative air ion and tensile properties. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

16.
The effects of the fiber reinforcement of a novel bioabsorbable chitin‐fiber‐reinforced poly(?‐caprolactone) (PCL) composite were improved by irradiation treatment. The tensile strength and tensile modulus of the treated specimens were enhanced with respect to those of the untreated specimens. An increase in the fiber content (Cf) resulted in an increase in this enhancement tendency until Cf was 45%. A further increase in Cf increased the tensile modulus but decreased the strength. The flexural strength and flexural modulus were increased for the irradiation‐treated specimens in the same way as the tensile test. The microstructure of the tensile fracture showed an improvement in interfacial bonding for the irradiated specimens. The glass‐transition temperature (Tg) of the composite increased with an increase in Cf for the irradiation‐treated specimens, but there was no change in Tg for the untreated specimens with various values of Cf. This indicated that, for the composites with irradiation treatment, the fiber intensively affected the molecular segmental motion of PCL and thereby enhanced the interfacial interaction between the matrices and fibers. The same slope of the storage modulus (G′) versus the loss modulus (G″) for the irradiated specimens suggested an increase in the compatibility of the composite in comparison with the decrease in the slope with increasing Cf for the untreated specimens. All this demonstrated that there was some interfacial reaction between the fiber and matrix that resulted in the presence of an interfacial phase and improved the mechanical properties of the materials. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 486–492, 2002; DOI 10.1002/app.10149  相似文献   

17.
The structure–property relationship of sugarcane bagasse fiber‐filled polyamide 6 blends at different blend compositions has been investigated. Blends were prepared in the composition of wt % PA6/wt % bagasse as follows: 98/2, 95/5, and 90/10 for three fiber length ranges (<100, <250, and <500 μm) using a twin‐screw extruder. Thermal properties were evaluated by measuring the glass transition temperature Tg, enthalpy of fusion ΔHf, crystallinity Xc and thermogravimetry, TG. Results showed that Tg of the composites changed with change in fiber loading and length. The Xc as well as ΔHf of the blends reduced to almost half its value for the neat PA6. The thermogravimetric curves TG showed that the thermal stability of the composites was lower than that of the neat PA6. Rheological properties were studied as a function of fiber loading, fiber length, shear rate, and temperature. The viscosity of composites increased with increasing fiber loading and length at low shear rates but decreased below that of neat PA6 at high shear rates. It was also found to be temperature sensitive, and influenced by fiber lengths particularly at higher temperatures. The morphology of the blends was studied using a Leica laser scanning confocal microscopy at two different regions: at the wall, and the core. The micrographs of the blends showed that fibers present in the form of bundles were found at the wall of the extrudates and increased in volume with increase in both length and concentration, at the same temperature and shear stress. In the core region, there is laminar flow, presenting striation morphology, with the omnipresent bundles of fibers dispersed in the matrix. At higher shear rates, the bundles were pushed to the wall. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3744–3754, 2004  相似文献   

18.
Sisal fibers were added to wood particle composites to enhance their toughness. The selected matrix was a commercial styrene diluted unsaturated polyester thermoset resin. Fracture tests were carried out using single‐edge notched beam geometries. Stiffness, strength, critical stress intensity factor KIQ, and work of fracture Wf of notched specimens were determined. The incorporation of sisal fibers into wood particle composites significantly changed the fracture mode of the resulting hybrid composite. For the neat matrix and the wood particle composites, once the maximum load was reached, the crack propagated in a catastrophic way. For hybrid composites, fiber bridging and pull‐out were the mechanisms causing increased crack growth resistance. Addition of a 7% wt of sisal fibers almost doubled the KIQ value of a composite containing 12% wt of woodflour. Moreover, the Wf increased almost 10‐fold, for the same sample. In general, the two composite toughness parameters KIQ and Wf increased when the fraction of sisal fibers was increased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1982–1987, 2006  相似文献   

19.
Vegetable fibers like cotton, sisal, and sugar cane bagasse have been used as reinforcement in a polymeric matrix. Because of its low cost and affinity with lignocellulosic fibers, a phenol‐formaldehyde resin —resol— was selected as the matrix. Composites were prepared by compression molding. The influence of fiber volume fraction‐Vf‐in flexural properties and density of composites has been studied. Cotton and sugar cane bagasse composites present a Vf value at which flexural strength and modulus are maxima. However, sisal composites show a continuous rise in flexural strength and modulus as fiber volume fraction increases, up to 76%, which is the highest concentration studied. Composites made with raw cotton show the highest values of strength and stiffness. The actual density of composites is always lower than theoretical density, due to the presence of voids. Scanning Electron Microscopy reveals a good adhesion between fiber and matrix in the composites. In addition, the flexural properties were analyzed with an efficiency criterion, which relates strength and stiffness with density, and the values obtained were compared with those corresponding to typical structural materials. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1832–1840, 2000  相似文献   

20.
In order to further improve the tribological performance of glass fiber reinforced epoxy (GF/EP) composites, highly flexible, binder‐free, molybdenum trioxide MoO3 nanobelt/graphene oxide (GO) film (f‐MoO3‐GO) is prepared by a hydrothermal method. Herein, f‐MoO3‐GO is adopted to modify GF/EP composites prepared through the vacuum‐assisted resin transfer molding method. The neat GF/EP and MoO3‐GO modified GF/EP composites are also fabricated for comparison. The tribological performance is performed using a ball‐on‐disc (“steel‐on‐polymer”) configuration under a dry sliding condition. The coefficient of friction is reduced from 0.61 for neat GF/EP composites down to 0.23 for f‐MoO3‐GO modified GF/EP (f‐MoO3‐GO/GF/EP) composites and the anti‐wear performance is improved by more than four times. The worn surface morphological observation for the composite samples is used to explain the possible wear micro‐mechanisms. The wear reducing effect of the f‐MoO3‐GO/GF/EP composites can be assigned to the increased self‐lubricating effect of f‐MoO3‐GO. With the combined advantageous properties of the used individual components, these unique composites can be used for many other applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号