首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Currently there is widespread use of ultrahigh molecular weight polyethylene (UHMWPE) acetabular components in total joint replacement prostheses. What has been most surprising about the wear of UHMWPE under such circumstances is the occurrence of brittle fracture. Such fracture had not been observed in the usual engineering tests done in the laboratory on UHMWPE. It was only when prosthese which had been removed from patients were examined or run in hip joint simulators with serum or synovial fluid as the lubricant, that brittle fracture was encountered. The problem of environment-enhanced brittle fracture in plastics dates back to 1946. Interestingly, the phenomenon was first described in polyethylene. The prime variables involved are polymer molecular weight, sensitizing environment, stress filed, and temperature. Other things being equal, brittle behavior in polyethylene is extremely sensitive to the amount of low molecular weight polymer present. In the light of the foregoing we have studied the molecular weight distribution in six commercially available UHMWPE components. These were obtained from six different manufacturers. The specimens were characterized both on their bearing (wear) surfaces and in their interior bulk. The results obtained indicate that:
  • 1 The UHMWPE components contain substantial amounts of low molecular weight polymer.
  • 2 The UHMWPE components differ significantly in molecular weight distribution.
  • 3 The UHMWPE components contain substantial amounts of crosslinked polymer.
  相似文献   

2.
Nanocomposite fibers of ultra high molecular weight polyethylene (UHMWPE) and organic montmorillonite (OMMT) were successfully prepared by a melt‐spinning process. The evolution of the microstructures of the nanocomposite fibers in the drawing process was preliminarily studied by X‐ray diffraction (XRD), differential scanning calorimetry, and small‐angle X‐ray scatters. With the increase of draw ratio values, the crystallinity of the nanocomposite fibers increased, the grain size decreased, and the folded chain crystals gradually transformed into extended chain crystals. The results suggested the evolution of the nanocomposite fibers was similar with that of the fibers made by gel‐spun drawing process. The addition of OMMT in UHMWPE improved the fluidity of the composites yet without affecting the crystal structure of UHMWPE in the drawing process. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3930–3936, 2013  相似文献   

3.
J. Wang  K. J. SmithJr. 《Polymer》1999,40(26):4236-7274
Ultimate mechanical properties of polyethylene fibers were measured. Results are in close agreement with the stress-induced melting theory of fracture (for finite molecular weight polymers). The perfect fiber work of rupture Wc, modulus Kc, strength σc, and strain c are found to be Wc=0.084±0.003 GPa; σc=7.5 GPa; Kc=335±12 GPa; c=0.0225±0.0005. The activation energy of fracture is measured as ≈108 kJ/mol—the activation energy of polyethylene fusion and one-third the activation energy of bond scission. Non-uniformity of fibers necessitates averaging properties over several test lengths. Actual stress-strain curves are decomposed into thermodynamic and irreversible components. Fusion theory applies to the thermodynamic component..  相似文献   

4.
A systematic study of the influence of the drawing temperature and rate on the ultradrawing properties of film samples prepared from gel solutions of ultrahigh molecular weight polyethylene and low molecular weight polyethylene blends is reported. At a fixed drawing rate, the achievable draw ratios reached a maximum value when each film specimen was drawn at a temperature near its optimum temperature (Top). It is interesting to note that the Top values of each film sample increased consistently with the drawing rate. The achievable draw ratio of each film sample drawn at a constant rate and a temperature near Top is referred to as the Draop, which reached another maximum value as the drawing rates approached an optimum value. Dynamic mechanical analysis of the film sample exhibited an extraordinary high transition peaked at temperature near 95°C, which is again very close to the Top value found for the film sample drawn at a relatively low rate. On the other hand, the birefringence values and tensile strengths of the film specimen were found to improve significantly with the draw ratios, although the improvement of these properties reduced significantly at high draw ratios. Moreover, both the drawing temperature and rate showed beneficial influence on the birefringence, and tensile strengths of the drawn film specimens. Possible mechanisms accounting for these interesting deformation properties are suggested.  相似文献   

5.
用凝胶纺丝法制备了超高分子量聚乙烯(UHMWPE)/高分子量聚乙烯(HDPE)纤维,探讨了添加不同种类高分子量聚乙烯对凝胶初生纤维在后续延伸过程中延伸性能的影响。结果表明在固定制备条件时,当超高分子量聚乙烯(UHMWPE)/高分子量聚乙烯(HDPE)的质量比在最适当质量比时,高分子量聚乙烯的分子量为1.5~2.0×104时,所制备的凝胶初生纤维的可延伸比达最大值。  相似文献   

6.
The concentrations and temperatures of ultrahigh‐molecular‐weight polyethylene (UHMWPE) gel solutions exhibited a significant influence on their rheological and spinning properties. The shear viscosities of UHMWPE solutions increased consistently with increasing concentrations at a constant temperature above 80°C. Tremendously high shear viscosities of UHMWPE gel solutions were found as the temperatures reached 120–140°C, at which their shear viscosity values approached the maximum. The spinnable solutions are those gel solutions with optimum shear viscosities and relatively good homogeneity in nature. Moreover, the gel solution concentrations and spinning temperatures exhibited a significant influence on the drawability and microstructure of the as‐spun fibers. At each spinning temperature, the achievable draw ratios obtained for as‐spun fibers prepared near the optimum concentration are significantly higher than those of as‐spun fibers prepared at other concentrations. The critical draw ratio of the as‐spun fiber prepared at the optimum concentration approached a maximum value, as the spinning temperature reached the optimum value of 150°C. Further investigations indicated that the best orientation of the precursors of shish‐kebab‐like entities, birefringence, crystallinity, thermal and tensile properties were always accompanied with the as‐spun fiber prepared at the optimum concentration and temperature. Similar to those found for the as‐spun fibers, the birefringence and tensile properties of the draw fibers prepared at the optimum condition were always higher than those of drawn fibers prepared at other conditions but stretched to the same draw ratio. Possible mechanisms accounting for these interesting phenomena are proposed.  相似文献   

7.
This investigation aims to improve the ultradrawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE) fibers by incorporating small amounts of functionalized activated nanocarbon particles with a wide range of specific surface areas (ca. 100–1,400 m2/g) during gel spinning processes of UHMWPE fibers. The ultradrawing, ultimate tensile, orientation properties, and “microfibril” characteristics of UHMWPE/functionalized activated nanocarbon fibers was discovered to improve considerably with the increase in specific surface areas of functionalized activated nanocarbon. An extraordinary high ultimate tensile strength at 95.8 g/d was obtained for the best prepared UHMWPE/functionalized activated nanocarbon drawn fiber. This value is the highest value ever reported for one‐stage drawn UHMWPE fibers and is about 2.9 times that of the UHMWPE drawn fiber prepared in this study. In addition to thermal, ultimate tensile, and orientation factor properties of as‐prepared and/or drawn UHMWPE/functionalized activated nanocarbon fibers, specific surface area, Fourier transform infrared, and morphological analyses of original and functionalized activated nanocarbons were performed to comprehend the considerably improved ultradrawing, ultimate tensile properties, and microfibril characteristics of the UHMWPE/functionalized activated nanocarbon fibers. POLYM. ENG. SCI., 58:980–990, 2018. © 2017 Society of Plastics Engineers  相似文献   

8.
Ultrahigh molecular weight fibers were treated by low energy ion beam in a pulse regime. Results of infrared and WAXD analyses showed the change of both chemical structure and morphology of the fiber surface. Adhesion of the treated fiber surface to conventional binders appeared to be two times higher than that of untreated fiber. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
A simple and feasible method to enhance the wear resistance of ultra-high molecular weight polyethylene (UHMWPE) fibers was reported. The graphite oxide (GO) prepared using improved Hummer's method was surface modified with hexadecylamine to improve its compatibility with UHMWPE. Combined with well-dispersion of modified-GO (m-GO) in dichloromethane and the fact that the viscosity of UHMWPE suspension can be decreased by dichloromethane, the well dispersed m-GO/dichloromethane was added into UHMWPE suspension to improve m-GO dispersion in UHMWPE fibers. Finally, UHMWPE fibers with different m-GO concentration were prepared using gel spinning technology. The effect of m-GO concentration on the structure and properties of modified UHMWPE fibers were investigated. The results indicated that the melting temperature and crystallinity of m-GO modified UHMWPE fibers increased with increasing of m-GO concentration, while the fiber's crystal sizes and orientation increased, thus the tensile strength of m-GO modified UHMWPE fibers remained almost undamaged. The introduction of m-GO is beneficial to the formation of smooth transfer film on fiber's surface, which enhanced the self-lubrication of UHMWPE fibers. Compared with pure UHMWPE fiber, the UHMWPE fiber containing 1.5 wt% m-GO had enhanced wear resistance by 55.4% and still maintained high tensile strength of 29.98 cN dtex−1.  相似文献   

10.
Four zirconium complexes containing fully deprotonated 2-(2H-benzo[d][1,2,3]triazol-2-yl)-4,6-di-tert-pentylphenol were used as catalysts for the polymerization of ethylene. In the presence of methylalumoxane (MAO) as a cocatalyst, the precursors were highly active for polyethylene with bimodal or multimodal molecular weight distribution.  相似文献   

11.
Superheating and double-melting endotherms are the characteristic melting behaviors of gel-spun ultra-high modulus and molecular weight polyethylene (UHMWPE) fibers in differential thermal analysis (DTA). A mostly orthorhombic structure with very little amorphous content is indicated by wide angle x-ray scattering (WAXS) data. The melting temperatures are elevated and believed to result from superheating and incomplete chain relaxation in the highly oriented and crystalline structure. The melting behavior of the fibers is shown to be strongly affected by changes in polymorphic transformations and in intercrystalline disordered domains. Compression in the direction perpendicular to fiber axis causes significant increases in the 110 and 200 dimensions of the orthorhombic structure. Such lateral compression increases monoclinic forms and perhaps amorphous content, and decreases the degree of transformation to hexagonal phase. Superheating, which is related to the intercrystalline stress, can be reduced by the presence of interacting solvents such as trichlorbenzene. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
A series of aluminoxanes, tetraethylaluminoxane (TEAO), tetraalkylaluminoxane (TAAO), Et2AlOB(4 ? F ? C6H4)OAlEt2 (BTEAO) and ethyl‐iso‐butylaluminoxane modified with p‐fluorophenylboric acid (BEBAO), were prepared and their effects on molecular weight (MW) and molecular weight distribution (MWD) of polyethylene prepared by the iron‐based catalyst [(ArN?C(Me))2C5H3N]FeCl2 (Ar?2,6‐dimethylphenyl) ( 1 ) were investigated. It was found that TEAO and BTEAO were highly efficient activators for iron‐based catalysts and introducing the branched bulky group (eg iso‐Bu) into the aluminoxane activator could improve the MW of the resulting polyethylene. The MW of polyethylene produced by activators modified by p‐fluorophenylboric acid was higher than for other aluminoxane activators. The TEAO‐ and TAAO‐based polyethylene exhibited attractive bimodal MWD, and the lower MW fraction of bimodal MWD was shown to be produced in the early stage of polymerization due to chain transfer to the aluminium activator. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
For the purpose of the development of ultrahigh molecular weight polyethylene (UHMWPE) fibers with improved tensile properties, the stearic acid (SA) was added to the gel spinning of UHMWPE and acted as a lubricant film. SA addition was intended to be 0.2, 0.4, 0.6, 0.8, and 1.0 wt% of UHMWPE for forming the SA modified UHMWPE fibers. The tensile properties, thermal properties, crystallization properties, and orientation properties of the prepared UHMWPE fibers were systematically investigated. Results show that there is a more significant tensile property for UHMWPE fibers as SA addition is 0.6 wt%. Their tensile strength and tensile modulus reach 32.86 and 1580.89 cN/dtex, which are raised to an extent of 12.0% and 7.7%, respectively, compared with UHMWPE fibers alone. Moreover, the thermal properties, crystallization properties, and orientation properties of the prepared UHMWPE fibers are enhanced observably when the SA addition is 0.6 wt%.  相似文献   

14.
Ultradrawing and ultimate tensile properties of ultrahigh molecular weight polyethylene (UHMWPE) composite fibers were successfully improved by the addition of nanoalumina (NAL), acid treated nanoalumina (ATNAL), and/or functionalized nanoalumina (FNAL). As evidenced by FTIR and TEM analyses, maleic anhydride grafted polyethylene (PEg‐MAH) molecules were successfully grafted onto ATNAL fillers. The specific surface areas of FNAL fillers reached a maximal value at 516 m2/g, as they were modified using an optimal weight ratio of PEg‐MAH to ATNAL at 8. Achievable draw ratio (Dra) values of UHMWPE/NAL (F100Ay), UHMWPE/ATNAL (F100Ax%‐8‐y) and/or UHMWPE/FNAL (F100Ax%‐8FPEzy) as‐prepared fibers approached a maximal value as NAL, ATNAL, and/or FNAL contents reached an optimal value at 0.1, 0.1, and 0.075 phr, respectively. The maximal Dra values of F100Ax%‐8FPEz0.075 as‐prepared fiber specimens were significantly higher than those of F100A0.1 and F100Ax%‐8‐0.1 as‐prepared fiber specimens. In which, the maximal Dra values obtained for F100Ax%‐8FPEz0.075 as‐prepared fibers reached another maximal value as FNAL fillers were modified using an optimal weight ratio of PEg‐MAH to ATNAL at 8. The ultimate tensile strength value of F100A2%‐8FPE80.075 drawn fiber reached 6.4 GPa, which was about 2.4 times of that of the UHMWPE drawn fibers prepared at the same optimal UHMWPE concentration and drawing condition. POLYM. ENG. SCI., 55:2205–2214, 2015. © 2015 Society of Plastics Engineers  相似文献   

15.
The influence of confinement in polymer-nanocomposites on free volume and glass transition of the polymer chains was studied. The molecular weight (Mw) of poly(ethylene-alt-propylene) (PEP) was varied from 3k to 200k and so the end-to end distance of the chains at fixed diameter (∼15 nm) and concentration (15%) of the silica nanoparticles increased. Thus the topological confinement increases with increasing Mw. Using hydrophobic PEP and particles functionalized with short organic molecules, we can rule out contributions of permanent adsorption of the chains. DSC showed no change in glass transition temperature. The decrease in the specific heat capacity could be explained by a simple mixing rule. By positron annihilation lifetime spectroscopy, taking properly into account contributions of the silica particles, we rule out an influence of the geometrical confinement on the free volume in the PEP nanocomposites studied here.  相似文献   

16.
A method for determining the melt viscosity and molecular weight of ultra high molecular weight polyethylene (UHMWPE) is described. The method, based on squeeze flow, was used to characterize seventeen UHM W-PE samples varying in molecular weight from 0.6 × 106 to 5.1 × 106 and in viscosity from 2.9 × 106 to 3.4 × 109 poise. A correlation between melt viscosity and molecular weight was demonstrated, but the reliability of a molecular weight determination decreased somewhat as molecular weight increased. As a predictor of melt processability, the method provides the speed and simplicity heretofore lacking in UHMW-PE characterization by solution viscosity while retaining high reproducibility.  相似文献   

17.
We report experimental observations on the drastically enhanced toughness in the high-strength and high-modulus ultrahigh molecular weight polyethylene (UHMWPE) films due to the addition of 1 wt% multiwalled carbon nanotubes (MWCNTs). A combination of tensile and Raman spectroscopic measurements showed that the presence of MWCNTs in the composites can lead to a ∼150% increase in strain energy density in comparison with the pure UHMWPE film at similar draw ratios. This is accompanied with an increase of ∼140% in ductility and up to 25% in tensile strength. We attribute the above observations to the chain mobility enhancement in UHMWPE induced by the MWCNTs.  相似文献   

18.
On heating in DSC, samples of UHMWPE show a single, fairly sharp, melting endotherm which may be increased to a peak temperature of 147°C and 77% crystallinity by annealing at elevated temperatures. An irreversible conversion of nascent to folded crystals, between 134 and 142°C, was observed by heating nascent UHMWPE powder in the calorimeter. In the presence of n-hexatriacontane, the melting endotherm of UHMWPE was depressed and broadened and the conversion of nascent to melt-crystallized polyethylene facilitated on heating. A melt-crystallized mixture of ordinary linear polyethylene (HDPE) and UHMWPE was not resolved on remelting. After annealing this mixture for 12 h at 130°C, HDPE was fractionated and the melting of UHMWPE was sharpened. Crystals of UHMWPE, prepared from dilute solution in xylene, show a single sharp melting endotherm and high crystallinity, but the melting peak is reduced in temperature compared to nascent crystallized powder.  相似文献   

19.
The extent of recrystallization of nascent UHMWPE powder is easily measured by calorimetry. Melting and recrystallization of nascent UHMWPE at 140°C can be suppressed by compression molding. Crystals of UHMWPE prepared from dilute solution show a peak melting temperature of 140°C and exhibit crystallinity up to 75.5% depending on crystallization temperature. Large changes in crystallinity result from drawing single crystal mats or compression-molded films.  相似文献   

20.
The structure evolution of commercial fibers with excellent performance is always a hot research topic. In this work, we used samples obtained from different forming stages of industrial production lines with a total draw ratio of 54.5 to explore the structure–property evolution of ultra-high molecular weight polyethylene (UHMWPE) fibers through a combination of differential scanning calorimetry, wide-angle X-ray diffraction, and small angle X-ray scattering methods. The results showed that the preferential orientation of amorphous molecular chain and the crystallinity increased rapidly in predrawing process, but the mechanical properties were basically unchanged, demonstrating that this stage had little effect on mechanical properties of fibers. At first-step drawing, the crystallinity and orientation degree increased from 68% to 81% and 0.88 to 0.97, respectively, accompanied by rapid increase in modulus and tensile strength (29.5 to 878.1 cN/dtex and 4.3 to 21.1 cN/dtex, respectively) and the formation of monoclinic phase and fibrillar crystals also happened at this stage. The content of monoclinic phase with tighter structure was increased during the second-step and third-step drawing, which were crucial for the continuous improving mechanical properties. In addition, the molecular schematic diagram was proposed to describe structural development of UHMWPE fibers during manufacture process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号