共查询到20条相似文献,搜索用时 15 毫秒
1.
Nasir Abbas Raja Fawad Zafar Muhammad Riaz Zawar Hussain 《Quality and Reliability Engineering International》2013,29(3):357-367
Control charts are widely used for process monitoring. They show whether the variation is due to common causes or whether some of the variation is due to special causes. To detect large shifts in the process, Shewhart‐type control charts are preferred. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are generally used to detect small and moderate shifts. Shewhart‐type control charts (without additional tests) use only current information to detect special causes, whereas CUSUM and EWMA control charts also use past information. In this article, we proposed a control chart called progressive mean (PM) control chart, in which a PM is used as a plotting statistic. The proposed chart is designed such that it uses not only the current information but also the past information. Therefore, the proposed chart is a natural competitor for the classical CUSUM, the classical EWMA and some recent modifications of these two charts. The conclusion of this article is that the performance of the proposed PM chart is superior to the compared ones for small and moderate shifts, and its performance for large shifts is better (in terms of the average run length). Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
2.
A New Chart for Monitoring Service Process Mean 总被引:1,自引:0,他引:1
Su‐Fen Yang Tsung‐Chi Cheng Ying‐Chao Hung Smiley W. Cheng 《Quality and Reliability Engineering International》2012,28(4):377-386
Control charts are demonstrated effective in monitoring not only manufacturing processes but also service processes. In service processes, many data came from a process with nonnormal distribution or unknown distribution. Hence, the commonly used Shewhart variable control charts are not suitable because they could not be properly constructed. In this article, we proposed a new mean chart on the basis of a simple statistic to monitor the shifts of the process mean. We explored the sampling properties of the new monitoring statistic and calculated the average run lengths of the proposed chart. Furthermore, an arcsine transformed exponentially weighted moving average chart was proposed because the average run lengths of this modified chart are more intuitive and reasonable than those of the mean chart. We would recommend the arcsine transformed exponentially weighted moving average chart if we were concerned with the proper values of the average run length. A numerical example of service times with skewed distribution from a service system of a bank branch in Taiwan is used to illustrate the proposed charts. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
3.
Abdul Haq Jennifer Brown Elena Moltchanova 《Quality and Reliability Engineering International》2015,31(8):1305-1325
A statistical quality control chart is widely recognized as a potentially powerful tool that is frequently used in many manufacturing and service industries to monitor the quality of the product or manufacturing processes. In this paper, we propose new synthetic control charts for monitoring the process mean and the process dispersion. The proposed synthetic charts are based on ranked set sampling (RSS), median RSS (MRSS), and ordered RSS (ORSS) schemes, named synthetic‐RSS, synthetic‐MRSS, and synthetic‐ORSS charts, respectively. Average run lengths are used to evaluate the performances of the control charts. It is found that the synthetic‐RSS and synthetic‐MRSS mean charts perform uniformly better than the Shewhart mean chart based on simple random sampling (Shewhart‐SRS), synthetic‐SRS, double sampling‐SRS, Shewhart‐RSS, and Shewhart‐MRSS mean charts. The proposed synthetic charts generally outperform the exponentially weighted moving average (EWMA) chart based on SRS in the detection of large mean shifts. We also compare the performance of the synthetic‐ORSS dispersion chart with the existing powerful dispersion charts. It turns out that the synthetic‐ORSS chart also performs uniformly better than the Shewhart‐R, Shewhart‐S, synthetic‐R, synthetic‐S, synthetic‐D, cumulative sum (CUSUM) ln S2, CUSUM‐R, CUSUM‐S, EWMA‐ln S2, and change point CUSUM charts for detecting increases in the process dispersion. A similar trend is observed when the proposed synthetic charts are constructed under imperfect RSS schemes. Illustrative examples are used to demonstrate the implementation of the proposed synthetic charts. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
4.
Abdul Haq 《Quality and Reliability Engineering International》2017,33(7):1499-1512
The exponentially weighted moving average (EWMA) control chart is one of a potentially powerful process monitoring tool of the statistical process control. The EWMA chart has now been widely used because of its excellent ability to detect small to moderate shifts in the process parameter(s). In this study, we propose a new nonparametric/distribution‐free EWMA chart for efficiently monitoring the changes in the process variability. We use extensive Monte Carlo simulations to compute the run length profiles of the proposed EWMA chart. For a better performance comparison, the proposed EWMA chart is compared with a recent existing EWMA chart that has already shown to have better performance than the existing control charts. It turns out that the proposed EWMA chart performs substantially and uniformly better than the existing powerful EWMA chart. The working and implementation of the proposed and existing EWMA charts with the help of an illustrative example are also included in this study. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
5.
Abdul Haq Jennifer Brown Elena Moltchanova 《Quality and Reliability Engineering International》2015,31(8):1623-1640
Exponentially weighted moving average (EWMA) quality control schemes have been recognized as a potentially powerful process monitoring tool because of their superior speed in detecting small to moderate shifts in the underlying process parameters. In quality control literature, there exist several EWMA charts that are based on simple random sampling (SRS) and ranked set sampling (RSS) schemes. Recently, a mixed RSS (MxRSS) scheme has been introduced, which encompasses both SRS and RSS schemes, and is a cost‐effective alternative to the RSS scheme. In this paper, we propose new EWMA control charts for efficiently monitoring the process mean based on MxRSS and imperfect MxRSS (IMxRSS) schemes, named EWMA–MxRSS and EWMA–IMxRSS charts, respectively. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed EWMA charts. The run length performances of the suggested EWMA charts are compared with the classical EWMA chart based on SRS (EWMA–SRS). It turns out that both EWMA–MxRSS and EWMA–IMxRSS charts perform uniformly better than the EWMA–SRS chart when detecting all different shifts in the process mean. An application to a real data set is provided as an illustration of the design and implementation of the proposed EWMA chart. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
A New Synthetic Exponentially Weighted Moving Average Control Chart for Monitoring Process Dispersion 下载免费PDF全文
Abdul Haq Jennifer Brown Elena Moltchanova 《Quality and Reliability Engineering International》2016,32(1):241-256
Exponentially weighted moving average (EWMA) control charts have been widely recognized as a potentially powerful process monitoring tool of the statistical process control because of their excellent speed in detecting small to moderate shifts in the process parameters. Recently, new EWMA and synthetic control charts have been proposed based on the best linear unbiased estimator of the scale parameter using ordered ranked set sampling (ORSS) scheme, named EWMA‐ORSS and synthetic‐ORSS charts, respectively. In this paper, we extend the work and propose a new synthetic EWMA (SynEWMA) control chart for monitoring the process dispersion using ORSS, named SynEWMA‐ORSS chart. The SynEWMA‐ORSS chart is an integration of the EWMA‐ORSS chart and the conforming run length chart. Extensive Monte Carlo simulations are used to estimate the run length performances of the proposed control chart. A comprehensive comparison of the run length performances of the proposed and the existing powerful control charts reveals that the SynEWMA‐ORSS chart outperforms the synthetic‐R, synthetic‐S, synthetic‐D, synthetic‐ORSS, CUSUM‐R, CUSUM‐S, CUSUM‐ln S2, EWMA‐ln S2 and EWMA‐ORSS charts when detecting small shifts in the process dispersion. A similar trend is observed when the proposed control chart is constructed under imperfect rankings. An application to a real data is also provided to demonstrate the implementation and application of the proposed control chart. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
7.
A New Maximum Exponentially Weighted Moving Average Control Chart for Monitoring Process Mean and Dispersion 下载免费PDF全文
Abdul Haq Jennifer Brown Elena Moltchanova 《Quality and Reliability Engineering International》2015,31(8):1587-1610
Maximum exponentially weighted moving average (MaxEWMA) control charts have attracted substantial interest because of their ability to simultaneously detect increases and decreases in both the process mean and the process variability. In this paper, we propose new MaxEWMA control charts based on ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts, respectively. The proposed MaxEWMA control charts are based on the best linear unbiased estimators obtained under ODRSS and OIDRSS schemes. Extensive Monte Carlo simulations are used to estimate the average run length and standard deviation of the run length of the proposed MaxEWMA control charts. The run length performances and the diagnostic abilities of the proposed MaxEWMA control charts are compared with that of their counterparts based on simple random sampling (SRS), ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling schemes (OIRSS) schemes, that is, MaxEWMA‐SRS, maximum generally weighted moving average (MaxGWMA‐SRS), MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts. It turns out that the proposed MaxEWMA‐ODRSS and MaxEWMA‐OIDRSS control charts perform uniformly better than the MaxEWMA‐SRS, MaxGWMA‐SRS, MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts in simultaneous detection of shifts in the process mean and variability. An application to real data is also provided to illustrate the implementations of the proposed and existing MaxEWMA control charts. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
An Improved Maximum Exponentially Weighted Moving Average Control Chart for Monitoring Process Mean and Variability 下载免费PDF全文
Abdul Haq Jennifer Brown Elena Moltchanova 《Quality and Reliability Engineering International》2015,31(2):265-290
Maximum exponentially weighted moving average (MaxEWMA) control charts have gained considerable attention for detecting changes in both process mean and process variability. In this paper, we propose an improved MaxEWMA control charts based on ordered ranked set sampling (ORSS) and ordered imperfect ranked set sampling (OIRSS) schemes for simultaneous detection of both increases and decreases in the process mean and/or variability, named MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts. These MaxEWMA control charts are based on the best linear unbiased estimators of location and scale parameters obtained under ORSS and OIRSS methods. Extensive Monte Carlo simulations have been used to estimate the average run length and standard deviation of run length of the proposed MaxEWMA control charts. These control charts are compared with their counterparts based on simple random sampling (SRS), that is, MaxEWMA‐SRS and MaxGWMA‐SRS control charts. The proposed MaxEWMA‐ORSS and MaxEWMA‐OIRSS control charts are able to perform better than the MaxEWMA‐SRS and MaxGWMA‐SRS control charts for detecting shifts in the process mean and dispersion. An application to real data is provided to illustrate the implementation of the proposed MaxEWMA control charts. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
9.
Abdul Haq Jennifer Brown Elena Moltchanova 《Quality and Reliability Engineering International》2014,30(8):1165-1177
A control chart is a powerful statistical process monitoring tool that is frequently used in many industrial and service organizations to monitor in‐control and out‐of‐control performances of the manufacturing processes. Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts have been recognized as potentially powerful tool in quality and management control. These control charts are sensitive to both small and moderate changes in the process. In this paper, we propose a new CUSUM (NCUSUM) quality control scheme for efficiently monitoring the process mean. It is shown that the classical CUSUM control chart is a special case of the proposed controlling scheme. The NCUSUM control chart is compared with some of the recently proposed control charts by using characteristics of the distribution of run length, i.e. average run length, median run length and standard deviation of run length. It is worth mentioning that the NCUSUM control chart detects the random shifts in the process mean substantially quicker than the classical CUSUM, fast initial response‐based CUSUM, adaptive CUSUM with EWMA‐based shift, adaptive EWMA and Shewhart–CUSUM control charts. An illustrative example is given to exemplify the implementation of the proposed quality control scheme. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
10.
Olatunde A. Adeoti John O. Olaomi Kayode S. Adekeye 《Quality and Reliability Engineering International》2016,32(5):1731-1740
Control charts are important tools in statistical process control used to monitor shift in process mean and variance. This paper proposes a control chart for monitoring the process mean using the Downton estimator and provides table of constant factors for computing the control limits for sample size (n ≤ 10). The derived control limits for process mean were compared with control limits based on range statistic. The performance of the proposed control charts was evaluated using the average run length for normal and non‐normal process situations. The obtained results showed that the control chart, using the Downton statistic, performed better than Shewhart chart using range statistic for detection of small shift in the process mean when the process is non‐normal and compares favourably well with Shewhart chart that is normally distributed. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
11.
A New Exponentially Weighted Moving Average Control Chart for Monitoring Process Dispersion 下载免费PDF全文
Abdul Haq Jennifer Brown Elena Moltchanova 《Quality and Reliability Engineering International》2015,31(8):1337-1357
Exponentially weighted moving average (EWMA) control charts have been widely recognized as an advanced statistical process monitoring tool due to their excellent performance in detecting small to moderate shifts in process parameters. In this paper, we propose a new EWMA control chart for monitoring the process dispersion based on the best linear unbiased absolute estimator (BLUAE) obtained under paired ranked set sampling (PRSS) scheme, which we name EWMA‐PRSS chart. The performance of the EWMA‐PRSS chart is evaluated in terms of the average run length and standard deviation of run length, estimated using Monte Carlo simulations. These control charts are compared with their existing counterparts for detecting both increases and decreases in the process dispersion. It is observed that the proposed EWMA‐PRSS chart performs uniformly better than the EWMA dispersion charts based on simple random sampling and ranked set sampling (RSS) schemes. We also construct an EWMA chart based on imperfect PRSS (IPRSS) scheme, named EWMA‐IPRSS chart, for detecting overall changes in the process variability. It turns out that, with reasonable assumptions, the EWMA‐IPRSS chart outperforms the existing EWMA dispersion charts. A real data set is used to explain the construction and operation of the proposed EWMA‐PRSS chart. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
12.
Abdul Haq Jennifer Brown Elena Moltchanova 《Quality and Reliability Engineering International》2016,32(1):269-290
Exponentially weighted moving average (EWMA) and cumulative sum (CUSUM) control charts are potentially powerful statistical process monitoring tools because of their excellent speed in detecting small to moderate persistent process shifts. Recently, synthetic EWMA (SynEWMA) and synthetic CUSUM (SynCUSUM) control charts have been proposed based on simple random sampling (SRS) by integrating the EWMA and CUSUM control charts with the conforming run length control chart, respectively. These synthetic control charts provide overall superior detection over a range of mean shift sizes. In this article, we propose new SynEWMA and SynCUSUM control charts based on ranked set sampling (RSS) and median RSS (MRSS) schemes, named SynEWMA‐RSS and SynEWMA‐MRSS charts, respectively, for monitoring the process mean. Extensive Monte Carlo simulations are used to estimate the run length characteristics of the proposed control charts. The run length performances of these control charts are compared with their existing powerful counterparts based on SRS, RSS and MRSS schemes. It turns out that the proposed charts perform uniformly better than the Shewhart, optimal synthetic, optimal EWMA, optimal CUSUM, near‐optimal SynEWMA, near‐optimal SynCUSUM control charts based on SRS, and combined Shewhart‐EWMA control charts based on RSS and MRSS schemes. A similar trend is observed when constructing the proposed control charts based on imperfect RSS schemes. An application to a real data is also provided to demonstrate the implementations of the proposed SynEWMA and SynCUSUM control charts. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
13.
Abdul Haq 《Quality and Reliability Engineering International》2013,29(7):1015-1025
Cumulative sum (CUSUM) and exponentially weighted moving average (EWMA) control charts are commonly used for monitoring the process mean. In this paper, a new hybrid EWMA (HEWMA) control chart is proposed by mixing two EWMA control charts. An interesting feature of the proposed control chart is that the traditional Shewhart and EWMA control charts are its special cases. Average run lengths are used to evaluate the performances of each of the control charts. It is worth mentioning that the proposed HEWMA control chart detects smaller shifts substantially quicker than the classical CUSUM, classical EWMA and mixed EWMA–CUSUM control charts. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
14.
为了解决多元非正态分布情况下的过程控制问题,提出基于数据深度的变点控制图,并对构建该控制图检验统计量的具体方法及控制流程进行了详细描述。为了检验该控制图的控制效果,采用服从二元伽马分布的样本数据对其进行了验证,并设置位置参数偏移范围为0.2至1.0,变点为14、24、34,几种情况分别检验其控制效果。数据仿真的结果表明:偏移越大,检测效果越好;偏移量小于0.7时,变点越大,检测效率越高;而当变点大于0.7时变点对检测效果的影响不明显。偏移量在0.1至0.4的范围内,变点越大,检测效果越好,但是这种边际效果在减小。 相似文献
15.
A New Hybrid Exponentially Weighted Moving Average Control Chart for Monitoring Process Mean: Discussion 下载免费PDF全文
Abdul Haq 《Quality and Reliability Engineering International》2017,33(7):1629-1631
A new hybrid exponentially weighted moving average (HEWMA) control chart has been proposed in the literature for efficiently monitoring the process mean. In that paper, the computed variance of the HEWMA statistic was, unfortunately, not correct! In this discussion, the correct variance of the HEWMA statistic is given, and the run length characteristics of the HEWMA control chart are studied and explored. It is noticed that not only the superiority of the HEWMA control chart remains over the existing (considered before) charts but also the new results based on the corrected control limits are more profound and reflective. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
16.
New Exponentially Weighted Moving Average Control Charts for Monitoring Process Mean and Process Dispersion 下载免费PDF全文
Abdul Haq Jennifer Brown Elena Moltchanova 《Quality and Reliability Engineering International》2015,31(5):877-901
Exponentially weighted moving average (EWMA) control charts have been widely accepted because of their excellent performance in detecting small to moderate shifts in the process parameters. In this paper, we propose new EWMA control charts for monitoring the process mean and the process dispersion. These EWMA control charts are based on the best linear unbiased estimators obtained under ordered double ranked set sampling (ODRSS) and ordered imperfect double ranked set sampling (OIDRSS) schemes, named EWMA‐ODRSS and EWMA‐OIDRSS charts, respectively. We use Monte Carlo simulations to estimate the average run length, median run length, and standard deviation of run length of the proposed EWMA charts. We compare the performances of the proposed EWMA charts with the existing EWMA charts when detecting shifts in the process mean and in the process variability. It turns out that the EWMA‐ODRSS mean chart performs uniformly better than the classical EWMA, fast initial response‐based EWMA, Shewhart‐EWMA, and hybrid EWMA mean charts. The EWMA‐ODRSS mean chart also outperforms the Shewhart‐EWMA mean charts based on ranked set sampling (RSS) and median RSS schemes and the EWMA mean chart based on ordered RSS scheme. Moreover, the graphical comparisons of the EWMA dispersion charts reveal that the proposed EWMA‐ODRSS and EWMA‐OIDRSS charts are more sensitive than their counterparts. We also provide illuminating examples to illustrate the implementation of the proposed EWMA mean and dispersion charts. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
17.
In this article, we propose nonparametric synthetic and side‐sensitive synthetic control charts for controlling fraction nonconforming due to increase in the process variation. Synthetic control chart is a combination of sign and conforming run length control charts. We compare performance of the proposed control charts with the Shewhart sign and S2 charts. Our performance study shows that the proposed control charts have a higher power of detecting out‐of‐control signal. We also study the steady‐state behavior of a nonparametric synthetic control chart. We present a Markov chain model to evaluate the steady‐state average run length of the synthetic and side‐sensitive synthetic control charts. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
A New Maximum EWMA Control Chart for Simultaneously Monitoring Process Mean and Dispersion Using Auxiliary Information 下载免费PDF全文
Abdul Haq 《Quality and Reliability Engineering International》2017,33(7):1577-1587
The maximum exponentially weighted moving average (MaxEWMA) control charts have gained considerable attention for simultaneously detecting both increases and decreases in the mean and/or dispersion of a process. In this paper, we propose a new auxiliary information‐based (AIB) MaxEWMA control chart, called the AIB‐MaxEWMA chart. The AIB‐MaxEWMA chart encompasses the existing MaxEWMA chart. Extensive Monte Carlo simulations are performed to evaluate the average run length, standard deviation of the run length, and diagnostic abilities of the AIB‐MaxEWMA chart. An extensive comparison reveals that the AIB‐MaxEWMA chart performs uniformly better than the MaxEWMA chart. An example is also used to explain the implementation and working of the AIB‐MaxEWMA chart. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
19.
The control chart based on Downton's estimator (D chart) has recently been introduced in the literature for monitoring the process variability. The D chart is found to be equally efficient to the S chart in terms of detecting shifts in process variability. In this paper, salient features of D chart and the conforming run length chart are combined to produce synthetic D chart. The average run length performance of the synthetic D chart is investigated using simulation study and is compared with the originally proposed D chart and some other procedures proposed in the literature. It is found that it has an improved performance in comparison with the traditional control charts for process variability. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
20.
Maoyuan Zhou Qin Zhou Wei Geng 《Quality and Reliability Engineering International》2016,32(7):2471-2479
Statistical process control is widely used in industrial processes, service fields, among others. While parametric control charts are useful in certain processes, there is often a lack of enough knowledge about the process distribution. So, nonparametric control charts are needed in such situations. This paper develops a new nonparametric control chart based on the Ansari–Bradley nonparametric test and the effective change point model. Simulation results show that our proposed control chart is superior to other nonparametric control charts in monitoring process variability for most cases. Our proposed control chart is easy in computation, and powerful for monitoring process variability. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献