首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with finite element (FE) nodes at their common interface, necessarily requiring that the FE mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modelling to two‐dimensional material domains due to difficulties in simulating full three‐dimensional material processes. In the present work, a new approach to MD–FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and FE nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. Thus, the method lends itself for use with any FEM or MD code. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three‐dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

2.
A new method for treating arbitrary discontinuities in a finite element (FE) context is presented. Unlike the standard extended FE method (XFEM), no additional unknowns are introduced at the nodes whose supports are crossed by discontinuities. The method constructs an approximation space consisting of mesh‐based, enriched moving least‐squares (MLS) functions near discontinuities and standard FE shape functions elsewhere. There is only one shape function per node, and these functions are able to represent known characteristics of the solution such as discontinuities, singularities, etc. The MLS method constructs shape functions based on an intrinsic basis by minimizing a weighted error functional. Thereby, weight functions are involved, and special mesh‐based weight functions are proposed in this work. The enrichment is achieved through the intrinsic basis. The method is illustrated for linear elastic examples involving strong and weak discontinuities, and matches optimal rates of convergence even for crack‐tip applications. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper, a finite element (FE)/fast multipole boundary element (FMBE)‐coupling method is presented for modeling fluid–structure interaction problems numerically. Vibrating structures are assumed to consist of elastic or sound absorbing materials. An FE method (FEM) is used for this part of the solution. This structural sub‐domain is embedded in a homogeneous fluid. The case where the boundary of the structural sub‐domain has a very complex geometry is of special interest. In this case, the BE method (BEM) is a more suitable numerical tool than FEM to account for the sound propagation in the homogeneous fluid. The efficiency of the BEM is increased by using FMBEM. The BE‐surface mesh required is directly generated by the FE‐mesh used to discretize the structural sub‐domain and the absorbing material. This FE/FMBE‐coupling method makes it possible to predict the effects of arbitrarily shaped absorbing materials and vibrating structures on the sound field in the surrounding fluid numerically. The coupling method proposed is used to study the acoustic behavior of the lining of an anechoic chamber and that of an entire anechoic chamber in the low‐frequency range. The numerical results obtained are compared with the experimental data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A point interpolation meshless method is proposed based on combining radial and polynomial basis functions. Involvement of radial basis functions overcomes possible singularity associated with the meshless methods based on only the polynomial basis. This non‐singularity is useful in constructing well‐performed shape functions. Furthermore, the interpolation function obtained passes through all scattered points in an influence domain and thus shape functions are of delta function property. This makes the implementation of essential boundary conditions much easier than the meshless methods based on the moving least‐squares approximation. In addition, the partial derivatives of shape functions are easily obtained, thus improving computational efficiency. Examples on curve/surface fittings and solid mechanics problems show that the accuracy and convergence rate of the present method is high. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
A mixed finite element (FE) and mesh-free (MF) method for gradient-dependent plasticity using linear complementarity theory is presented. The assumed displacement field is interpolated in terms of its discrete values defined at the nodal points of the FE mesh with the FE shape functions, whereas the assumed plastic multiplier field required to express its Laplacian is interpolated in terms of its discrete values defined at the integration points of the FE mesh with the MF interpolation functions. A standard form of linear complementarity problem is constructed by combining the weak form of momentum conservation equation and pointwise enforcements of both non-local constitutive equation and non-local yield criterion. The discrete values of the plastic multiplier are taken as the only primary unknowns to be determined. The numerical results demonstrate the validity of the proposed method in the simulation of the strain localization phenomenon due to strain softening.  相似文献   

6.
In high‐speed low‐load mechanisms, the principal loads are the inertial forces caused by the high accelerations and velocities. Hence, mechanical design should consider lightweight structures to minimize such loads. In this paper, a topological optimization method is presented on the basis of the equivalent static loads method. Finite element (FE) models of the mechanism in different positions are constructed, and the equivalent loads are obtained using flexible multibody dynamics simulation. Kinetic DOFs are used to simulate the motion joints, and a quasi‐static analysis is performed to obtain the structural responses. The element sensitivity is calculated according to the static‐load‐equivalent equilibrium, in such a way that the influence on the inertial force is considered. A dimensionless component sensitivity factor (strain energy caused by unit load divided by kinetic energy from unit velocity) is used, which quantifies the significance of each element. Finally, the topological optimization approach is presented on the basis of the evolutionary structural optimization method, where the objective is to find the maximum ratio of strain energy to kinetic energy. In order to show the efficiency of the presented method, we presented two numerical cases. The results of these analyses show that the presented method is more efficient and can be easily implemented in commercial FE analysis software. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Convected particle domain interpolation (CPDI) is a recently developed extension of the material point method, in which the shape functions on the overlay grid are replaced with alternative shape functions, which (by coupling with the underlying particle topology) facilitate efficient and algorithmically straightforward evaluation of grid node integrals in the weak formulation of the governing equations. In the original CPDI algorithm, herein called CPDI1, particle domains are tracked as parallelograms in 2‐D (or parallelepipeds in 3‐D). In this paper, the CPDI method is enhanced to more accurately track particle domains as quadrilaterals in 2‐D (hexahedra in 3‐D). This enhancement will be referred to as CPDI2. Not only does this minor revision remove overlaps or gaps between particle domains, it also provides flexibility in choosing particle domain shape in the initial configuration and sets a convenient conceptual framework for enrichment of the fields to accurately solve weak discontinuities in the displacement field across a material interface that passes through the interior of a grid cell. The new CPDI2 method is demonstrated, with and without enrichment, using one‐dimensional and two‐dimensional examples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
提出一种单自由度电磁振动能量采集器的系统辨识方法——电压映射方法,该方法基于恢复力曲面法的辨识思想,在系统恢复力函数、电磁机电耦合函数和等效电感函数的具体形式未知的情况下,能准确辨识出具有强非线性的恢复力函数、电磁机电耦合函数和等效电感函数.利用两个典型的非线性模型算例进行验证:一是含有非线性弹性恢复力的电磁振动能量采...  相似文献   

9.
基于振动测试的非线性参数识别方法   总被引:2,自引:1,他引:1       下载免费PDF全文
研究了利用特殊的正弦扫频技术识别非线性参数的方法。该方法利用目前线性系统成熟的模态分析技术,并结合等效线性化理论,通过振动测试识别结构的非线性参数,可以建立一个更加准确的模型来反映非线性结构的动力学特性,从而提高模型的预测精度。该方法包括两部分:(1)常位移测试识别非线性刚度;(2)常速度测试识别非线性阻尼。常位移测试是在一次正弦扫频过程中,通过调整各频率下的激励力幅值使得位移响应的幅值为常数,获得一组频响函数,通过模态分析获得等效刚度;改变位移响应的幅值进行多次测试,获得多组等效刚度;对获得的一系列恒定位移响应下的等效刚度进行曲线拟合,即可获得所有线性和非线性刚度参数。常速度测试与其类似。以三自由度非线性系统为例,进行了常位移测试和  相似文献   

10.
Component mode‐based model‐order reduction (MOR) methods like the Craig–Bampton method or the Rubin method are known to be limited to structures with small coupling interfaces. This paper investigates two interface‐reduction methods for application of MOR to systems with large coupling interfaces: for the Craig–Bampton method a direct reduction method based on strain energy considerations is investigated. Additionally, for the Rubin method an iterative reduction scheme is proposed, which incrementally constructs the reduction basis. Hereby, attachment modes are tested if they sufficiently enlarge the spanned subspace of the current reduction basis. If so, the m‐orthogonal part is used to augment the basis. The methods are applied to FE–BE coupled systems in order to predict the vibro‐acoustic behavior of structures, which are partly immersed in water. Hereby, a strong coupling scheme is employed, since for dense fluids the feedback of the acoustic pressure onto the structure is not negligible. For two example structures, the efficiency of the reduction methods with respect to numerical effort, memory consumption and computation time is compared with the exact full‐order solution. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A new algorithm is developed to improve the accuracy and efficiency of the material point method for problems involving extremely large tensile deformations and rotations. In the proposed procedure, particle domains are convected with the material motion more accurately than in the generalized interpolation material point method. This feature is crucial to eliminate instability in extension, which is a common shortcoming of most particle methods. Also, a novel alternative set of grid basis functions is proposed for efficiently calculating nodal force and consistent mass integrals on the grid. Specifically, by taking advantage of initially parallelogram‐shaped particle domains, and treating the deformation gradient as constant over the particle domain, the convected particle domain is a reshaped parallelogram in the deformed configuration. Accordingly, an alternative grid basis function over the particle domain is constructed by a standard 4‐node finite element interpolation on the parallelogram. Effectiveness of the proposed modifications is demonstrated using several large deformation solid mechanics problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

This study employed the approach of non‐linear autoregressive moving average model with exogenous inputs (NARMAX) to analyze the dynamics of a Permanent Magnet Synchronous Motor (PMSM). The non‐linearity in PMSM including cogging force, reluctance force and force ripple is difficult to estimate. By using the NARMAX approach, thrust‐speed relationship and thrust‐position relationship could be analyzed by identifying both time and frequency domain models of the system. The frequency domain analysis is studied by mapping the discrete‐time NARMAX models into generalized frequency response functions (GFRFs) to reveal the non‐linear coupling between the various input spectral components and the energy transfer mechanisms in the system. From the results, the interpretation of the higher‐order GFRFs has been comprehensively studied and non‐linear effects have been related to the physical models of the systems.  相似文献   

13.
The bridging domain method is an overlapping domain decomposition approach for coupling finite element continuum models and molecular mechanics models. In this method, the total energy is decomposed into atomistic and continuum parts by complementary weight functions applied to each part of the energy in the coupling domain. To enforce compatibility, the motions of the coupled atoms are constrained by the continuum displacement field using Lagrange multipliers. For composite lattices, this approach is suboptimal because the internal modes of the lattice are suppressed by the homogeneous continuum displacement field in the coupling region. To overcome this difficulty, we present a relaxed bridging domain method. In this method, the atom set is divided into primary and secondary atoms; the relative motions between them are often called the internal modes. Only the primary atoms are constrained in the coupling region, which succeed in allowing these internal modes to fully relax. Several one‐ and two‐dimensional examples are presented, which demonstrate improved accuracy over the standard bridging domain method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, an explicit time integration method with three parameters is proposed for structural dynamics using periodic septuple B‐spline interpolation polynomial functions. In this way, by use of septuple B‐splines, the authors have proceeded to solve the DE of motion governing a single DOF system, and later, the presented method has been generalized for a multiple DOF system. In the proposed method, a direct recursive formula for response of the system was formulated on the basis of septuple B‐spline interpolation approximation. In terms of the specific requirements of this proposed method, two initialization approaches are given for initial calculation. One is called direct initialization, and the other is indirect initialization. The stability analysis of the proposed method illustrates that, by use of adjustable parameters, a high‐frequency response can be damped out without inducing excessive algorithmic damping in important low frequency modes. The computational accuracy and efficiency of the proposed method is demonstrated with three numerical examples, and the results from the proposed method are compared with those from some of the existent numerical methods, such as the Newmark and Wilson‐ θ methods. The compared results show that the proposed method has high accuracy with low time consumption. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
The material point method (MPM) enhanced with B‐spline basis functions, referred to as B‐spline MPM (BSMPM), is developed and demonstrated using representative quasi‐static and dynamic example problems. Smooth B‐spline basis functions could significantly reduce the cell‐crossing error as known for the original MPM. A Gauss quadrature scheme is designed and shown to be able to diminish the quadrature error in the BSMPM analysis of large‐deformation problems for the improved accuracy and convergence, especially with the quadratic B‐splines. Moreover, the increase in the order of the B‐spline basis function is also found to be an effective way to reduce the quadrature error and to improve accuracy and convergence. For plate impact examples, it is demonstrated that the BSMPM outperforms the generalized interpolation material point (GIMP) and convected particle domain interpolation (CPDI) methods in term of the accuracy of representing stress waves. Thus, the BSMPM could become a promising alternative to the MPM, GIMP, and CPDI in solving certain types of transient problems.  相似文献   

16.
An error‐reproducing and interpolating kernel method (ERIKM), which is a novel and improved form of the error‐reproducing kernel method (ERKM) with the nodal interpolation property, is proposed. The ERKM is a non‐uniform rational B‐splines (NURBS)‐based mesh‐free approximation scheme recently proposed by Shaw and Roy (Comput. Mech. 2007; 40 (1):127–148). The ERKM is based on an initial approximation of the target function and its derivatives by NURBS basis functions. The errors in the NURBS approximation and its derivatives are then reproduced via a family of non‐NURBS basis functions. The non‐NURBS basis functions are constructed using a polynomial reproduction condition and added to the NURBS approximation obtained in the first step. In the ERKM, the interpolating property at the boundary is achieved by repeating the knot (open knot vector). However, for most problems of practical interest, employing NURBS with open knots is not possible because of the complex geometry of the domain, and consequently ERKM shape functions turn out to be non‐interpolating. In ERIKM, the error functions are obtained through localized Kriging based on a minimization of the squared variance of the estimate with the reproduction property as a constraint. Interpolating error functions so obtained are then added to the NURBS approximant. While enriching the ERKM with the interpolation property, the ERIKM naturally possesses all the desirable features of the ERKM, such as insensitivity to the support size and ability to reproduce sharp layers. The proposed ERIKM is finally applied to obtain strong and weak solutions for a class of linear and non‐linear boundary value problems of engineering interest. These illustrations help to bring out the relative numerical advantages and accuracy of the new method to some extent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
An Arlequin poromechanics model is introduced to simulate the hydro‐mechanical coupling effects of fluid‐infiltrated porous media across different spatial scales within a concurrent computational framework. A two‐field poromechanics problem is first recast as the twofold saddle point of an incremental energy functional. We then introduce Lagrange multipliers and compatibility energy functionals to enforce the weak compatibility of hydro‐mechanical responses in the overlapped domain. To examine the numerical stability of this hydro‐mechanical Arlequin model, we derive a necessary condition for stability, the twofold inf–sup condition for multi‐field problems, and establish a modified inf–sup test formulated in the product space of the solution field. We verify the implementation of the Arlequin poromechanics model through benchmark problems covering the entire range of drainage conditions. Through these numerical examples, we demonstrate the performance, robustness, and numerical stability of the Arlequin poromechanics model. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper we present a new approach for finite element solution of time‐harmonic wave problems on unbounded domains. As representatives of the wave problems, discrete Green's functions are evaluated in finite element sense. The finite element mesh is considered to be of repeatable pattern (cell) constructed in rectangular co‐ordinates. The system of FE equations is therefore reduced to a set of well‐known dispersion equations by using a spectral solution approach. The spectral wave bases are constructed directly from the FE dispersion equations. Radiation condition is satisfied by selecting the wave bases so that the wave information is transmitted in appropriate directions at the cell level. Dirichlet/Neumann boundary conditions are defined at the edges of a quadrant of the main domain while using the axes of symmetry of the problem. A new discrete transformation method, recently proposed by the authors, is used to satisfy the boundary conditions. Comprehensive studies are made for showing the validity, accuracy and convergence of the solutions. The results of the benchmark problems indicate that the proposed method can be used to evaluate discrete Green's functions whose analytical forms are not available. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, an efficient and accurate meshless natural neighbour Petrov–Galerkin method (NNPG) is proposed to solve elasto‐static problems in two‐dimensional space. This method is derived from the generalized meshless local Petrov–Galerkin method (MLPG) as a special case. In the NNPG, the local supported trial functions are constructed based on the non‐Sibsonian interpolation and test functions are taken as the three‐node triangular FEM shape functions. The local weak forms of the equilibrium equation and the boundary conditions are satisfied in local polygonal sub‐domains. These sub‐domains are constructed with Delaunay tessellations and domain integrals are evaluated over included Delaunay triangles by using Gaussian quadrature scheme. As this method combines the advantages of natural neighbour interpolation with Petrov–Galerkin method together, no stiffness matrix assembly is required and no special treatment is needed to impose the essential boundary conditions. Several numerical examples are presented and the results show the presented method is easy to implement and very accurate for these problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
针对调谐质量阻尼器(TMD)和颗粒阻尼器的减振特点及各自不足,提出将并联式单向单颗粒阻尼器(PSSPD)与TMD有机结合的复合减振技术方案—PSSPD与TMD并联体系。在深入剖析其减振特性的基础上,将颗粒与受控结构之间的碰撞力等效为脉冲力,建立复合减振体系力学模型和方程。采用时域和频域结合的方法并对模型进行分析并求解,使求解过程直接、无需求解微分方程且易于求解特殊激励形式动力响应。提出简谐激励下复合减振结构系统的最优减振参数设计方法,对该系统进行性能参数分析,验证了力学模型的精度及优化方法的可行性。建立该复合减振体系在地震动下的参数优化方法并对其合理性和准确性进行验证。最后,对PSSPD、TMD及复合减振体系的减振机理、性能及减震效果进行深入分析。结果表明:基于时频域解析的复合减振体系力学模型能够直观体现其减振机理,求解过程清晰且精度高,参数优化分析方法合理、可行且准确;复合减振体系有效克服了TMD和PSSPD的不足,具有更佳的减震效果、更宽的减振频带及更强的鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号