首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 17 毫秒
1.
A new high‐order sliding mode controller is proposed. The main features are gain adaptivity and the use of integral sliding mode concept. The gain adaptation allows a reduction of the chattering and gives a solution to control uncertain nonlinear systems whose the uncertainties/perturbations have unknown bounds. The concept of real high‐order sliding mode detector is introduced given that it plays a key role in the adaptation law of the gain. This new control approach is applied by simulation to an academic example to evaluate its efficiency. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the design of a new adaptive optimization‐based second‐order sliding mode control algorithm for uncertain nonlinear systems. It is designed on the basis of a second‐order sliding mode control with optimal reaching, with the aim of reducing the control effort while maintaining all the positive aspects in terms of finite‐time convergence and robustness in front of matched uncertainties. These features are beneficial to guarantee good performance in case of vehicle dynamics control, a crucial topic in the light of the increasing demand of semiautonomous and autonomous driving capabilities in commercial vehicles. The new proposal is theoretically analyzed, as well as verified relying on an extensive comparative study, carried out on a realistic simulator of a 4‐wheeled vehicle, in the case of a lateral stability control system.  相似文献   

3.
For the high precise tracking control purpose of a cable‐driven manipulator under lumped uncertainties, a novel adaptive fractional‐order nonsingular terminal sliding mode control scheme based on time delay estimation (TDE) is proposed and investigated in this paper. The proposed control scheme mainly has three elements, ie, a TDE element applied to properly compensate the lumped unknown dynamics of the system resulting in a fascinating model‐free feature; a fractional‐order nonsingular terminal sliding mode (FONTSM) surface element used to ensure high precision in the steady phase; and a combined reaching law with adaptive technique adopted to obtain fast convergence and high precision and chatter reduction under complex lumped disturbance. Stability of the closed‐loop control system is analyzed with the Lyapunov stability theory. Comparative simulations and experiments were performed to demonstrate the effectiveness of our proposed control scheme using 2‐DOF (degree of freedom) of a cable‐driven manipulator named Polaris‐I. Corresponding results show that our proposed method can ensure faster convergence, higher precision, and better robustness against complex lumped disturbance than the existing TDE‐based FONTSM and continuous FONTSM control schemes.  相似文献   

4.
To design an rth (r>2) order sliding mode control system, a sliding variable and its derivatives of up to (r ? 1) are in general required for the control implementation. This paper proposes a reduced‐order design algorithm using only the sliding variable and its derivatives of up to (r ? 2) as the extension of the second‐order asymptotic sliding mode control. For a linear time‐invariant continuous‐time system with disturbances, it is found that a high‐order sliding mode can be reached locally and asymptotically by a reduced‐order sliding mode control law if the sum of the system poles is less than the sum of the system zeros. The robust stability of the reduced‐order high‐order sliding mode control system, including the convergence to the high‐order sliding mode and the convergence to the origin is proved by two Lyapunov functions. Simulation results show the effectiveness of the proposed control algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A higher order sliding mode control scheme for uncertain nonlinear systems is proposed in the present paper. It is shown that the problem is equivalent to the finite time stabilization of higher order input-output dynamics with bounded uncertainties (rN). The controller uses integral sliding mode concept and contains two parts. A part achieves finite time stabilization of the higher order input-output dynamics without uncertainties. The other part rejects bounded uncertainties throughout the entire response of the system. As a result, a higher order sliding mode is established. The advantages of the method are that its implementation is easy, the time convergence is chosen in advance and the robustness is ensured. An illustrative example of a car control shows the applicability of the method.  相似文献   

6.
不确定非线性系统的自适应反演终端滑模控制   总被引:8,自引:1,他引:8  
针对一类参数严格反馈型不确定非线性系统, 本文提出一种自适应反演终端滑模控制方法. 反演控制的前n-1步结合自适应律估计系统的未知参数, 第n步采用非奇异终端滑模, 使系统最后一个状态有限时间内收敛.利用微分估计器获得误差系统状态的导数, 并设计了高阶滑模控制律, 去除控制抖振, 使系统对于匹配和非匹配不确定性均具有鲁棒性. 同自适应反演线性滑模方法相比, 所提方法提高了系统的收敛速度和稳态跟踪精度, 并且控制信号更加平滑. 仿真结果验证了该方法的有效性.  相似文献   

7.
针对一类具有不确定参数的复杂非线性系统,提出了一种自适应积分滑模控制方法。控制器的设计分两步进行:首先,基于被控对象模型构造一个简化子系统,设计出该子系统的一个全局渐近稳定控制律;然后构造一个积分滑模面,设计自适应积分滑模补偿器以处理系统中含有不确定参数的部分,保证了滑模面的可达性和原系统的闭环稳定性。补偿后,系统的完整自适应控制律由简化子系统的控制律加补偿控制器两部分组成。所提设计方法简单,便于工程实现。最后,通过仿真结果验证了设计方案的有效性。  相似文献   

8.
对于不确定的机械手系统,提出一种鲁棒自适应控制方法,用自适应控制来估计系统的未知参数,用终端滑模控制来减少不确定因素的影响,为了避免因干扰的存在使自适应的估计参数发生漂移,引入死区自适应控制.仿真表明,滑模控制不仅抑制了误差,而且消除了死区自适应算法的局限性,该算法在取得较好控制效果的同时,具有很强的鲁棒性.  相似文献   

9.
The problem of output control in multiple‐input–multiple‐output nonlinear systems is addressed. A high‐order sliding‐mode observer is used to estimate the states of the system and identify the discrepancy between the nominal model and the real plant. The exact and finite‐time estimation may be tackled as long as the system presents the algebraic strong observability property. Thus, a continuous robust input‐output linearization strategy can be obtained with respect to a prescribed output. As a consequence, the closed‐loop dynamics performs robustly to uncertainties/perturbations. To illustrate the advantages of the proposed method, we introduce a study case that demands a robust linear system behavior: the self‐oscillations induced in an underactuated mechanical system through a two‐relay controller. Experiments with an inertial wheel pendulum illustrate the feasibility of the proposed approach.  相似文献   

10.
针对不确定严格反馈块控非线性系统, 提出了一种基于反步法的鲁棒自适应终端滑模变结构控制方法. 系统的未知不确定及外界干扰由模糊系统在线逼近, 利用反步法设计了变结构控制的终端滑模面, 并由此得到了鲁棒自适应终端滑模控制器, 使系统的跟踪误差在有限时间内趋于给定轨迹的任意小的邻域内. 通过Lyapunov定理证明了闭环系统所有信号最终有界. 对某战斗机6自由度机动仿真结果表明, 该方法具有强鲁棒性.  相似文献   

11.
The research on discrete‐time higher‐order sliding mode has received a considerable attention recently. Systems with unmatched uncertainties are common in practice; however, the existing discrete‐time higher‐order sliding mode control algorithms are designed considering only matched uncertainty. This paper proposes a technique to design discrete‐time higher‐order sliding mode control for an uncertain LTI system in the presence of unmatched uncertainty. The proposed technique is numerically simulated and experimentally validated on an electromechanical rectilinear plant. Various experiments are conducted considering the several operational conditions of electromechanical systems in industries to verify the performance of the proposed controller.  相似文献   

12.
Singular systems with matched Lipschitz perturbations and uncertainties are considered in this paper. Since continuous solutions of an impulse‐free singular system require continuous input signals, a two‐step continuous sliding‐mode control strategy to compensate matched Lipschitz perturbations and uncertainties in singular systems is proposed. Our suggested methodology is tested in a singular representation of a DC motor pendulum of relative degree two. The performance of the proposed strategy is assessed by comparing the accuracy, in both cases, with and without considering small noise in the output, obtained through other continuous sliding‐mode control, and reconstruction/compensation of perturbations and uncertainties techniques.  相似文献   

13.
An adaptive fixed‐time trajectory tracking controller is proposed for uncertain mechanical systems in this study. The polynomial reference trajectory is planned for trajectory tracking error. Fractional power of linear sliding mode is applied to design the nonlinear controller, adaptive laws are used to adjust controller parameters. Trajectory planning and fractional power are combined to ensure the tracking‐error convergence in a fixed time. The boundary layer technique is used to suppress the model uncertainties and decrease the chattering phenomenon. The closed‐loop system stability is proved strictly in the Lyapunov framework to show that the trajectory tracking errors and adaptive parameters tend to zero in a fixed time set in advance. Numerical simulation results of robotic manipulators illustrate the effectiveness of the proposed controller.  相似文献   

14.
提出了一种自适应模糊全局快速Terminal滑模控制方法,在参数不确定性和外干扰情况下,为解决系统的非线性不确定性提供了一种新途径。与传统模糊Terminal滑模控制相比,通过采用模糊逻辑系统来逼近未知系统函数和开关项;鲁棒自适应律用来减小逼近误差,从而有效降低抖振;证明了该控制方案的稳定性,并将该方案应用在倒立摆系统中。仿真结果验证了该方案的有效性。  相似文献   

15.
The problem of compensation of the effects of unmatched uncertainties ∕ perturbations is considered. High‐order sliding mode observers are employed for exact state and uncertainties ∕ perturbations reconstruction. A sliding mode control design is proposed ensuring theoretically exact compensation of the uncertainties ∕ perturbations for the corresponding unmatched states based on the identified perturbation values. An inverted pendulum simulation example is considered illustrating the feasibility of the proposed approach.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Sliding mode control approaches are developed to stabilize a class of linear uncertain fractional‐order dynamics. After making a suitable transformation that simplifies the sliding manifold design, two sliding mode control schemes are presented. The first one is based on the conventional discontinuous first‐order sliding mode control technique. The second scheme is based on the chattering‐free second‐order sliding mode approach that leads to the same robust performance but using a continuous control action. Simple controller tuning formulas are constructively developed along the paper by Lyapunov analysis. The simulation results confirm the expected performance. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
This note addresses the multi‐input second‐order sliding mode control design for a class of nonlinear multivariable uncertain dynamics. Among the most important peculiarities of the considered control problem, the considered sliding vector variable has a uniform vector relative degree [2,2, … ,2] with respect to the vector control variable, and only the sign of the sliding vector and of its derivative are available for feedback. Additionally, the symmetric part of the state‐dependent control matrix is supposed to be positive definite. Under some further mild restrictions on the uncertain system's dynamics, a control algorithm that realizes a multi‐input version of the ‘twisting’ second‐order sliding mode control algorithm is suggested. Simple controller tuning conditions are derived by means of a constructive Lyapunov analysis, which demonstrates that the suggested control algorithm guarantees the semiglobal asymptotic convergence to the sliding manifold. Simulation results, which confirm the good performance of the proposed scheme and investigate the actual accuracy obtained under the discrete‐time implementation effects, are given. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, the problem of finite‐time control for small‐scale unmanned helicopter system with high‐order mismatched disturbance is investigated via continuous nonsingular terminal sliding‐mode control approach. The key idea is to design a novel nonlinear dynamic sliding‐mode surface based on finite‐time disturbance observer. Then, the finite‐time convergence and chattering attenuation capability is guaranteed by the continuous nonsingular terminal sliding‐mode control law. Additionally, rigorous finite‐time stability analysis for the closed‐loop helicopter system is given by means of the Lyapunov theory. Finally, some simulation results demonstrate the effectiveness and predominant properties of the proposed control method for the small‐scale unmanned helicopter even in the presence of high‐order mismatched disturbance.  相似文献   

19.
This paper investigates the problem of consensus tracking control for second‐order multi‐agent systems in the presence of uncertain dynamics and bounded external disturbances. The communication ?ow among neighbor agents is described by an undirected connected graph. A fast terminal sliding manifold based on lumped state errors that include absolute and relative state errors is proposed, and then a distributed finite‐time consensus tracking controller is developed by using terminal sliding mode and Chebyshev neural networks. In the proposed control scheme, Chebyshev neural networks are used as universal approximators to learn unknown nonlinear functions in the agent dynamics online, and a robust control term using the hyperbolic tangent function is applied to counteract neural‐network approximation errors and external disturbances, which makes the proposed controller be continuous and hence chattering‐free. Meanwhile, a smooth projection algorithm is employed to guarantee that estimated parameters remain within some known bounded sets. Furthermore, the proposed control scheme for each agent only employs the information of its neighbor agents and guarantees a group of agents to track a time‐varying reference trajectory even when the reference signals are available to only a subset of the group members. Most importantly, finite‐time stability in both the reaching phase and the sliding phase is guaranteed by a Lyapunov‐based approach. Finally, numerical simulations are presented to demonstrate the performance of the proposed controller and show that the proposed controller exceeds to a linear hyperplane‐based sliding mode controller. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
针对一类不确定非线性系统的跟踪控制问题,在考虑建模误差、参数不确定和外部干扰情况下,以其拥有良好的跟踪性能以及强鲁棒性为目标,提出基于回归扰动模糊神经网络干扰观测器(recurrent perturbation fuzzy neural networks disturbance observer,RPFNNDO)的鲁棒自适应二阶动态terminal滑模控制策略.将回归网络、模糊神经网络和sine-cosine扰动函数各自优势相结合,给出一种回归扰动模糊神经网络结构,提出RPFNNDO设计方法,保证干扰估计准确性;构造基于带有指数函数滑模面的二阶快速terminal滑模面,给出其控制器设计过程,避免了滑模到达阶段、传统滑模的抖振问题,采用具有指数收敛的鲁棒项抑制干扰估计误差对系统跟踪性能的影响,利用Lyapunov理论证明闭环系统的稳定性;将该方法应用于混沌陀螺系统同步控制仿真实验,结果表明所提方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号