首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
A combination of the ‘semi-empirical’ model for secondary electron production and the TRIM routines which describe ion stopping power, scattering, and transport, has been used to construct a Monte Carlo simulation (IONiSE) that can quantitatively interpret the generation of secondary electrons (SE) from materials by fast helium ions. This approach requires that the parameters of the semi-empirical model be determined by fitting to experimental yield data but has the merit that, unlike more fundamental models, it can be applied with equal ease to both pure elements and complex compounds. The application of the model to predict the topographic yield variation of helium generated SE as a function of energy and material, and to investigate the ratio between SE generated by incident and backscattered ions, is demonstrated.  相似文献   

2.
Focused ion beam‐scanning electron microscopy (FIB‐SEM) is a widely used and easily operational equipment for three‐dimensional reconstruction with flexible analysis volume. It has been using successfully and increasingly in the field of solid oxide fuel cell. However, the phase contrast of the SEM images is indistinct in many cases, which will bring difficulties to the image processing. Herein, the phase contrast of a conventional Ni/yttria stabilized zirconia anode is tuned in an FIB‐SEM with In‐Lens secondary electron (SE) and backscattered electron detectors. Two accessories, tungsten probe and carbon nozzle, are inserted during the observation. The former has no influence on the contrast. When the carbon nozzle is inserted, best and distinct contrast can be obtained by In‐Lens SE detector. This method is novel for contrast enhancement. Phase segmentation of the image can be automatically performed. The related mechanism for different images is discussed.  相似文献   

3.
Li HM  Ding ZJ 《Scanning》2005,27(5):254-267
A new Monte Carlo technique for the simulation of secondary electron (SE) and backscattered electron (BSE) of scanning electron microscopy (SEM) images for an inhomogeneous specimen with a complex geometric structure has been developed. The simulation is based on structure construction modeling with simple geometric structures, as well as on the ray-tracing technique for correction of electron flight-step-length sampling when an electron trajectory crosses the interface of the inhomogeneous structures. This correction is important for the simulation of nanoscale structures of a size comparable with or even less than the electron scattering mean free paths. The physical model for electron transport in solids combines the use of the Mott cross section for electron elastic scattering and a dielectric function approach for electron inelastic scattering, and the cascade SE production is also included.  相似文献   

4.
Properties of a composite material made of a continuous matrix and particles often depend on microscopic details, such as contacts between particles. Focusing on processing raw focused‐ion beam scanning electron microscope (FIB‐SEM) tomography data, we reconstructed three mixed‐matrix membrane samples made of 6FDA‐ODA polyimide and silicalite‐1 particles. In the first step of image processing, backscattered electron (BSE) and secondary electron (SE) signals were mixed in a ratio that was expected to obtain a segmented 3D image with a realistic volume fraction of silicalite‐1. Second, after spatial alignment of the stacked FIB‐SEM data, the 3D image was smoothed using adaptive median and anisotropic nonlinear diffusion filters. Third, the image was segmented using the power watershed method coupled with a seeding algorithm based on geodesic reconstruction from the markers. If the resulting volume fraction did not match the target value quantified by chemical analysis of the sample, the BSE and SE signals were mixed in another ratio and the procedure was repeated until the target volume fraction was achieved. Otherwise, the segmented 3D image (replica) was accepted and its microstructure was thoroughly characterized with special attention paid to connectivity of the silicalite phase. In terms of the phase connectivity, Monte Carlo simulations based on the pure‐phase permeability values enabled us to calculate the effective permeability tensor, the main diagonal elements of which were compared with the experimental permeability. In line with the hypothesis proposed in our recent paper (?apek, P. et al. (2014) Comput. Mater. Sci. 89 , 142–156), the results confirmed that the existence of particle clusters was a key microstructural feature determining effective permeability.  相似文献   

5.
T Agemura  S Fukuhara  H Todokoro 《Scanning》2001,23(6):403-409
A measurement technique for incident electron current in secondary electron (SE) detectors, especially the Everhart-Thornley (ET) detector, based on signal-to-noise ratio (SNR), which uses the histogram of a digital scanning electron microscope (SEM) image, is described. In this technique, primary electrons are directly incident on the ET detector. This technique for measuring the correlation between incident electron current and SNR is applicable to the other SE detectors. This correlation was applied to estimate the efficiency of the ET detector itself, to evaluate SEM image quality, and to measure the geometric SE collection efficiency and the SE yield. It was found that the geometric SE collection efficiency at each of the upper and lower detectors of a Hitachi S-4500 SEM was greater than 0.78 at all working distances.  相似文献   

6.
Chemical-mechanical planarization (CMP) is a process that gives a flat surface on a silicon wafer by removing material from above a chosen level. This flat surface must then be reviewed (typically using a laser) and inspected for scratches and other topographic defects. This inspection has been done using both the atomic force microscope (AFM) and the scanning electron microscope (SEM), each of which has its own advantages and disadvantages. In this study, the low-loss electron (LLE) method in the SEM was applied to CMP samples at close to a right angle to the beam. The LLEs show shallower topographic defects more clearly than it is possible with the secondary electron (SE) imaging method. These images were then calibrated and compared with those obtained using the AFM, showing the value of both methods. It is believed that the next step is to examine such samples at a right angle to the beam in the SEM using the magnetically filtered LLE imaging method.  相似文献   

7.
We demonstrate the use of electron microscopy as a powerful characterization tool to identify and locate antibody-conjugated composite organic-inorganic nanoparticle (COINs) surface enhanced Raman scattering (SERS) nanoparticles on cells. U937 leukemia cells labeled with antibody CD54-conjugated COINs were characterized in their native, hydrated state using wet scanning electron microscopy (SEM) and in their dehydrated state using high-resolution SEM. In both cases, the backscattered electron (BSE) detector was used to detect and identify the silver constituents in COINs due to its high sensitivity to atomic number variations within a specimen. The imaging and analytical capabilities in the SEM were further complemented by higher resolution transmission electron microscopy (TEM) images and scanning Auger electron spectroscopy (AES) data to give reliable and high-resolution information about nanoparticles and their binding to cell surface antigens.  相似文献   

8.
We examined CD133 distribution in a human hepatoblastoma cell line (HuH‐6 clone 5). We directly observed the cultured cells on a pressure‐resistant thin film (silicon nitride thin film) in a buffer solution by using the newly developed atmospheric scanning electron microscope (ASEM), which features an open sample dish with a silicon nitride thin film window at its base, through which the scanning electron microscope beam scans samples in solution, from below. The ASEM enabled observation of the ventral cell surface, which could not be observed using standard SEM. However, observation of the dorsal cell surface was difficult with the ASEM. Therefore, we developed a new method to observe the dorsal side of cells by using Aclar® plastic film. In this method, cells are cultured on Aclar plastic film and the dorsal side of cells is in contact with the thin silicon nitride film of the ASEM dish. A preliminary study using the ASEM showed that CD133 was mainly localized in membrane ruffles in the peripheral regions of the cell. Standard transmission electron microscopy and scanning electron microscopy revealed that CD133 was preferentially concentrated in a complex structure comprising filopodia and the leading edge of lamellipodia. We also observed co‐localization of CD133 with F‐actin. An antibody against CD133 decreased cell migration. Methyl‐β‐cyclodextrin treatment decreased cell adhesion as well as lamellipodium and filopodium formation. A decrease in the cholesterol level may perturb CD133 membrane localization. The results suggest that CD133 membrane localization plays a role in tumor cell adhesion and migration. Microsc. Res. Tech. 76:844–852, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Scanning electron microscopy (SEM) techniques are widely used in microstructural investigations of materials since it can provide surface morphology, topography, and chemical information. However, it is important to use correct imaging and sample preparation techniques to reveal the microstructures of materials composed of components with different polishing characteristics such as grey cast iron, graphene platelets (GPLs)‐added SiAlON composite, SiC and B4C ceramics containing graphite or graphene‐like layered particles. In this study, all microstructural details of gray cast iron were successfully revealed by using argon ion beam milling as an alternative to the standard sample preparation method for cast irons, that is, mechanical polishing followed by chemical etching. The in‐lens secondary electron (I‐L‐SE) image was clearly displayed on the surface details of the graphites that could not be revealed by backscattered electron (BSE) and Everhart–Thornley secondary electron (E‐T SE) images. Mechanical polishing leads to pull‐out of GPLs from SiAlON surface, whereas argon ion beam milling preserved the GPLs and resulted in smooth surface. Grain and grain boundaries of polycrystalline SiC and B4C were easily revealed by using I‐L SE image in the SEM after only mechanical polishing without any etching process. While the BSE and E‐T SE images did not clearly show the residual graphites in the microstructure, their distribution in the B4C matrix was fully revealed in the I‐L SE image.  相似文献   

10.
Cazaux J 《Ultramicroscopy》2008,108(12):1645-1652
Contrast changes of SEM images with experimental conditions (beam energy, angle of detection, etc.) are analyzed by combining physical arguments based on secondary electron emission (SEE) to instrumental arguments involving detection. Possible occurrences of contrast reversals are explored to illustrate these changes in a striking manner. Deduced from SEE yield data, simulated SEM images show a material contrast reversal for a Pt/quartz specimen, a result partly supported by real images of a Cr/quartz integrated circuit. A shift of reversal energy with the detector's position is deduced from a difference in secondary electrons (SE) angular distributions between metals and insulators. Similarly, changes of topographic contrast with detection conditions, specimen composition and angle of tilt are investigated and a possible contrast reversal is again indicated. Finally, it is shown how charging contrast deduced from the expected evolution of SEE yield during irradiation is amplified by in-lens detection: a point illustrated by a contrast reversal of images of SiC particles. The main application concerns a proper interpretation of SEM images that is essential in the investigation of devices obtained from lithographic processes. The discussion on material contrast outlines the difficulty in generalizing the present analysis based on published data and experimental strategies based on implementing specific attachments in the SEM or on biasing the specimen holder are suggested.  相似文献   

11.
A scanning electron microscope (SEM) can be used to measure the dimensions of the microlithographic features of integrated circuits. However, without a good model of the electron-beam/specimen interaction, accurate edge location cannot be obtained. A Monte Carlo code has been developed to model the interaction of an electron beam with one or two lines lithographically produced on a multilayer substrate. The purpose of the code is to enable one to extract the edge position of a line from SEM measurements. It is based on prior codes developed at the National Institute of Standards and Technology, but with a new formulation for the atomic scattering cross sections and the inclusion of a method to simulate edge roughness or rounding. The code is currently able to model the transmitted and backscattered electrons, and the results from the code have been applied to the analysis of electron transmission through gold lines on a thin silicon substrate, such as is used in an x-ray lithographic mask. Significant reductions in backscattering occur because of the proximity of a neighboring line.  相似文献   

12.
With the reduction of critical dimensions (CD) of physical gate lines, standard methods for evaluating bottom CD from the scanning electron microscope (SEM) signal become inaccurate. The two peaks, originating from the line edges, merge into a single peak, and the correct position of the topographical top and bottom points is not clear. A general Monte Carlo simulation program, developed to model SEM signals, was used to analyze the signals emerging from ultra small silicon lines. By correlating the simulated signals with the features, we deduced the location of the top and bottom points. This analysis was done for lines with various CDs, sidewall angles, and corner rounding, as well as for different spot sizes. This work shows the feasibility of using SEM for measuring ultranarrow features and supply data for algorithm development.  相似文献   

13.
In environmental scanning electron microscopy applications in the kPa regime are of increasing interest for the investigation of wet and biological samples, because neither sample preparation nor extensive cooling are necessary. Unfortunately, the applications are limited by poor image quality. In this work the image quality at high pressures of a FEI Quanta 600 (field emission gun) and a FEI Quanta 200 (thermionic gun) is greatly improved by optimizing the pressure limiting system and the secondary electron (SE) detection system. The scattering of the primary electron beam strongly increases with pressure and thus the image quality vanishes. The key to high‐image quality at high pressures is to reduce scattering as far as possible while maintaining ideal operation conditions for the SE‐detector. The amount of scattering is reduced by reducing both the additional stagnation gas thickness (aSGT) and the environmental distance (ED). A new aperture holder is presented that significantly reduces the aSGT while maintaining the same field‐of‐view (FOV) as the original design. With this aperture holder it is also possible to make the aSGT even smaller at the expense of a smaller FOV. A new blade‐shaped SE‐detector is presented yielding better image quality than usual flat SE‐detectors. The electrode of the new SE detector is positioned on the sample table, which allows the SE‐detector to operate at ideal conditions regardless of pressure and ED.  相似文献   

14.
Egerton RF 《Ultramicroscopy》2007,107(8):575-586
We discuss various factors that determine the performance of electron energy-loss spectroscopy (EELS) and energy-filtered (EFTEM) imaging in a transmission electron microscope. Some of these factors are instrumental and have undergone substantial improvement in recent years, including the development of electron monochromators and aberration correctors. Others, such as radiation damage, delocalization of inelastic scattering and beam broadening in the specimen, derive from basic physics and are likely to remain as limitations. To aid the experimentalist, analytical expressions are given for beam broadening, delocalization length, energy broadening due to core-hole and excited-electron lifetimes, and for the momentum resolution in angle-resolved EELS.  相似文献   

15.
We present the quantitative measurement of inelastic intensity distributions in diffraction patterns with the aim of studying magnetic materials. The relevant theory based on the mixed dynamic form factor (MDFF) is outlined. Experimentally, the challenge is to obtain sufficient signal for core losses of 3d magnetic materials (in the 700-900eV energy-loss range). We compare two experimental settings in diffraction mode, i.e. the parallel diffraction and the large-angle convergent-beam electron diffraction configurations, and demonstrate the interest of using a spherical aberration corrector. We show how the energy spectrum imaging (ESI) technique can be used to map the inelastic signal in a data cube of scattering angle and energy loss. The magnetic chiral dichroic signal is measured for a magnetite sample and compared with theory.  相似文献   

16.
The spatial resolution of electron diffraction within the scanning electron microscope (SEM) has progressed from channelling methods capable of measuring crystallographic characteristics from 10 μm regions to electron backscatter diffraction (EBSD) methods capable of measuring 120 nm particles. Here, we report a new form of low‐energy transmission Kikuchi diffraction, performed in the SEM. Transmission‐EBSD (t‐EBSD) makes use of an EBSD detector and software to capture and analyse the angular intensity variation in large‐angle forward scattering of electrons in transmission, without postspecimen coils. We collected t‐EBSD patterns from Fe–Co nanoparticles of diameter 10 nm and from 40 nm‐thick Ni films with in‐plane grain size 15 nm. The patterns exhibited contrast similar to that seen in EBSD, but are formed in transmission. Monte Carlo scattering simulations showed that in addition to the order of magnitude improvement in spatial resolution from isolated particles, the energy width of the scattered electrons in t‐EBSD is nearly two orders of magnitude narrower than that of conventional EBSD. This new low‐energy transmission diffraction approach builds upon recent progress in achieving unprecedented levels of imaging resolution for materials characterization in the SEM by adding high‐spatial‐resolution analytical capabilities.  相似文献   

17.
Pooley GD 《Scanning》2004,26(5):240-249
Secondary (SE) and backscattered electron (BSE) imaging as well as x-ray microanalysis have demonstrated that the weathering of chromian spinel occurs as a progressive form of alteration. Numerous chemical discriminant analysis methods based on the composition of chromian spinel are used to locate valuable deposits of minerals. These methods will be misleading if the correct interpretation of the weathering of chromian spinel and the subsequent pattern of changes in its mineral chemistry are not properly assessed using scanning electron microscopy. This assessment is vital in understanding the geological processes involved and the economic potential of any indicated deposit. Minerals such as chromian spinel, pyrope garnet, and picroilmenite are considered to be highly resistant to weathering and abrasion and are therefore useful in the search for associated valuable deposits of diamond, nickel, platinum, and gold. Known as indicator minerals, they are usually present in relatively large concentrations compared with the target mineral (e.g., diamond) and form large and often subtle dispersion anomalies adjacent to the deposit. Chromian spinel has long been regarded as a stable indicator mineral; however, detailed SE and BSE imaging indicates that many of the chromian spinels that are routinely examined using scanning electron microscopes (SEM) and microprobes are extensively altered. Secondary electron and BSE imaging of weathered chromian spinel in a normal SEM provides valuable data on the form and chemical style of the alteration. Secondary electron imaging of weathered chromian spinel in the environmental SEM (ESEM) not only enhances the difference in atomic number between unaltered and altered areas but also allows high-resolution imaging of these very fine replacement textures.  相似文献   

18.
Scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) is a widely applied elemental microanalysis method capable of identifying and quantifying all elements in the periodic table except H, He, and Li. By following the “k‐ratio” (unknown/standard) measurement protocol development for electron‐excited wavelength dispersive spectrometry (WDS), SEM/EDS can achieve accuracy and precision equivalent to WDS and at substantially lower electron dose, even when severe X‐ray peak overlaps occur, provided sufficient counts are recorded. Achieving this level of performance is now much more practical with the advent of the high‐throughput silicon drift detector energy dispersive X‐ray spectrometer (SDD‐EDS). However, three measurement issues continue to diminish the impact of SEM/EDS: (1) In the qualitative analysis (i.e., element identification) that must precede quantitative analysis, at least some current and many legacy software systems are vulnerable to occasional misidentification of major constituent peaks, with the frequency of misidentifications rising significantly for minor and trace constituents. (2) The use of standardless analysis, which is subject to much broader systematic errors, leads to quantitative results that, while useful, do not have sufficient accuracy to solve critical problems, e.g. determining the formula of a compound. (3) EDS spectrometers have such a large volume of acceptance that apparently credible spectra can be obtained from specimens with complex topography that introduce uncontrolled geometric factors that modify X‐ray generation and propagation, resulting in very large systematic errors, often a factor of ten or more. SCANNING 35: 141‐168, 2013. 1 Published 2012 Wiley Periodicals, Inc.  相似文献   

19.
We set out to study connected porosity of crystalline rock using X‐ray microtomography and scanning electron microscopy with energy dispersive X‐ray spectroscopy (SEM‐EDS) with caesium chloride as a contrast agent. Caesium is an important radionuclide regarding the final deposition of nuclear waste and also forms dense phases that can be readily distinguished by X‐ray microtomography and SEM‐EDS. Six samples from two sites, Olkiluoto (Finland) and Grimsel (Switzerland), where transport properties of crystalline rock are being studied in situ, were investigated using X‐ray microtomography and SEM‐EDS. The samples were imaged with X‐ray microtomography, immersed in a saturated caesium chloride (CsCl) solution for 141, 249 and 365 days and imaged again with X‐ray microtomography. CsCl inside the samples was successfully detected with X‐ray microtomography and it had completely penetrated all six samples. SEM‐EDS elemental mapping was used to study the location of caesium in the samples in detail with quantitative mineral information. Precipitated CsCl was found in the connected pore space in Olkiluoto veined gneiss and in lesser amounts in Grimsel granodiorite. Only a very small amount of precipitated CsCl was observed in the Grimsel granodiorite samples. In Olkiluoto veined gneiss caesium was found in pinitised areas of cordierite grains. In the pinitised areas caesium was found in notable excess compared to chloride, possibly due to the combination of small pore size and negatively charged surfaces. In addition, elevated concentrations of caesium were found in kaolinite and sphalerite phases. The findings concerning the location of CsCl were congruent with X‐ray microtomography.  相似文献   

20.
Scanning electron microscopy (SEM) has become a popular means of studying micro-organisms which associate with surfaces. However, as yet no detailed examination has been made of the influence of specimen preparation on the number of organisms finally seen on the SEM screen. In this investigation critical assessment is made of the influence of a wide range or preparative factors on the preservation of filamentous bacteria associated with the epithelial surfaces of rat intestine. Organisms were quantitated using a rigorous counting method (transect line analysis); statistical testing of these counts enabled the comparison of different preparative factors. The composition of the fixative was found to significantly influence the number of organisms preserved; of the fifteen fixatives studied, Karnovsky's fixative with ruthenium red best preserved surface-associated organisms. The influence of other factors on the number and appearance of preserved organisms was also examined. These factors included the washing of specimens prior to fixation, the storage of fixed specimens, and the handling and storage of critical point dried specimens. The results are discussed with reference to the optimal methods for preparing specimens for SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号