首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the crystallization behavior of the β‐isotactic polypropylene (β‐iPP) samples nucleated by a rare earth based β‐nucleating agent (β‐NA) WBG‐II and a metal salts compound β‐NA NAB83 (denoted as WPP and NPP, respectively) under different cooling conditions were comparatively investigated. The thermal conditions such as the cooling rate, isothermal crystallization temperature, isothermal crystallization time, and the subsequent cooling to room temperature. The results of WAXD, SEM, and nonisothermal crystallization reveal that under the same processing conditions, the crystallite size of NPP is smaller, which arrange more compactly as compared with WPP. Meanwhile, NPP has shorter crystallization rate and higher β‐nucleation selectivity, but WPP can crystallization at wider temperature range. The results of isothermal crystallization showed that NPP has higher selectivity and higher β‐nucleation efficiency, which favors the formation of high proportion of β‐phase at the isothermal crystallization temperature of 110–130°C with and without subsequent cooling; WPP has lower selectivity, which can only induce high content of β‐phase under isothermal crystallization without subsequent cooling to 25°C. In tuning the crystallization behavior and the properties of β‐PP, the joint influence of the efficiency and selectivity of the β‐NA, and the thermal conditions should be taken into consideration. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40115.  相似文献   

2.
Zinc adipate (Adi‐Zn) was observed to be a highly active and selective β‐nucleating agent for isotactic polypropylene (iPP). The effects of Adi‐Zn on the mechanical properties and the β‐crystals content of nucleated iPP were investigated. The impact strength of iPP nucleated with 0.2 wt % Adi‐Zn was 1.8 times higher than that of neat iPP. In addition, wide‐angle X‐ray diffraction analysis indicated that the content of β‐crystals in nucleated iPP (kβ value) reached 0.973 with 0.1 wt % Adi‐Zn, indicating that Adi‐Zn is a highly active and selective β‐nucleating agent for iPP. Furthermore, fast scanning chip calorimetry (FSC) studies using cooling rates from 60 to 13,800 °C min?1 revealed that the formation of β‐crystals significantly depended on the cooling rates. At cooling rates below 3000 °C min?1, only β‐crystals existed. However, at cooling rates above 6000 °C min?1, β‐crystals failed to form. Moreover, a lower critical crystallization temperature that corresponded to the generation of β‐crystals was investigated using cooling‐induced crystallization, and the results are in good agreement with those of a previous study. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43767.  相似文献   

3.
The crystalline structure, morphology, and nonisothermal crystallization behavior of isotactic polypropylene (iPP) with and without a novel rare earth‐containing β‐nucleating agent (WBG) were investigated with wide‐angle X‐ray diffraction, polar optical microscopy, and differential scanning calorimetry. WBG could induce the formation of the β form, and a higher proportion of the β form could be obtained by the combined effect of the optimum WBG concentration and a lower cooling rate. The content of the β form could reach more than 0.90 in a 0.08 wt % WBG nucleated sample at cooling rates lower than 5°C/min. Polar optical microscopy showed that WBG led to substantial changes in both the morphological development and crystallization process of iPP. At all the studied cooling rates, the temperature at which the maximum rate of crystallization occurred was increased by 8–11°C in the presence of the nucleating agent. An analysis of the nonisothermal crystallization kinetics also revealed that the introduction of WBG significantly shortened both the apparent incubation period for crystallization and the overall crystallization time. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Calcium salts of suberic (Ca‐Sub) and pimelic (Ca‐Pim) acids were synthesized and implemented as in different grades of isotactic polypropylene (iPP). Propylene homopolymer, as well as random and block copolymers containing these additives, crystallized iPP into pure or nearly pure β modification in the isothermal and nonisothermal crystallization experiments. Recently, Ca‐Sub proved to be the most effective β‐nucleating agent of iPP. The Ca‐Sub nucleating agent widens the upper crystallization temperature range of pure β‐iPP formation up to 140°C. In this study the effect of the these additives on the crystallization, melting characteristics, and structure of the PP were studied. The degree of crystallinity of β‐iPP was markedly higher than that of α‐iPP. A widening in the melting peak of the samples crystallized in a high temperature range was first observed and discussed in regard to literature results of the same phenomenon for α‐iPP. The morphology of the β‐iPP samples was revealed by scanning electron microscopy. Independent of the type of polymer or nucleating agent, hedritic structures were found in the early stages of growth of the β‐spherulites. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2357–2368, 1999  相似文献   

5.
In this work, we reported calcium tetrahydrophthalate as a high efficient β‐nucleating agent (β‐NA) for impact‐resistant polypropylene copolymer (IPC). The relative fraction of the β‐crystal can reach as high as 93.5% when only 0.03% β‐NA is added. The non‐isothermal and isothermal crystallization behaviors, morphology, lamellar structure and mechanical properties of IPCs with various β‐NA contents were studied. During non‐isothermal crystallization, the cooling rate has an important influence on the relative fraction of the β‐crystal, which decreases remarkably as the cooling rate increases. The β‐NA also greatly accelerates crystallization rate of IPC, resulting from both more crystal nuclei and larger Avrami exponent. The small angle X‐ray scattering characterization shows that more amorphous components are included into the inter‐lamellae after addition of β‐NA. Dynamical mechanical analysis (DMA) reveals that the storage modulus at low temperature and the loss factor above 0 °C from the PP component can be enhanced upon addition of β‐NA and reach a maximum at the β‐NA content of 0.05 wt %. Impact test shows that the impact strength of the IPC at 0°C can be improved as much as 40% when the content of calcium tetrahydrophthalate is 0.10 wt %. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40753.  相似文献   

6.
In this study, the melt structure of isotactic polypropylene (iPP) nucleated with α/β compounded nucleating agents (α/β‐CNA, composed of the α‐NA of 0.15 wt % Millad 3988 and the β‐NA of 0.05 wt % WBG‐II) was tuned by changing the fusion temperature Tf. In this way, the role of melt structure on the crystallization behavior and polymorphic composition of iPP were investigated by differential scanning calorimetry (DSC), wide‐angle X‐ray scattering (WAXD) and scanning electron microscopy (SEM). The results showed that when Tf = 200°C (iPP was fully molten), the α/β‐CNA cannot encourage β‐phase crystallization since the nucleation efficiency (NE) of the α‐NA 3988 was obviously higher than that of the β‐NA WBG‐II. Surprisingly, when Tf was in 179–167°C, an amount of ordered structures survived in the melt, resulting in significant increase of the proportion of β‐phase (achieving 74.9% at maximum), indicating that the ordered structures of iPP played determining role in β‐phase crystallization of iPP nucleated with the α/β‐CNA. Further investigation on iPP respectively nucleated with individual 3988 and WBG‐II showed that as Tf decreased from 200°C to 167°C, the crystallization peak temperature Tc of iPP/3988 stayed almost constant, while Tc of iPP/WBG‐II increased gradually when Tf < 189°C and became higher than that of iPP/3988 when Tf decreased to 179°C and lower, which can be used to explain the influence of ordered structure and α/β‐CNA on iPP crystallization. Using this method, the selection of α‐NA for α/β‐CNA can be greatly expanded even if the inherent NE of β‐NA is lower than that of the α‐NA. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41355.  相似文献   

7.
The non‐isothermal crystallization behavior, the crystallization kinetics, the crystallization activation energy and the morphology of isotactic polypropylene (iPP) with varying content of β‐nucleating agent were investigated using differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). The DSC results showed that the Avrami equation modified by Jeziorny and a method developed by Mo and co‐workers could be successfully used to describe the non‐isothermal crystallization process of the nucleated iPPs. The values of n showed that the non‐isothermal crystallization of α‐ and β‐nucleated iPPs corresponded to a tridimensional growth with homogeneous and heterogeneous nucleation, respectively. The values of crystallization rate constant showed that the rate of crystallization decreased for iPPs with the addition of β‐nucleating agent. The crystallization activation energy increased with a small amount (less than 0.1 wt%) of β‐nucleating agent and decreased with higher concentration (more than 0.1 wt%). The changes of crystallization rate, crystallization time and crystallization activation energy of iPPs with varying contents of β‐nucleating agent were mainly determined by the ratio of the content of α‐ and β‐phase in iPP (α‐PP and β‐PP) from the DSC investigation, and the large size and many intercrossing lamellae between boundaries of β‐spherulites for iPPs with small amounts of β‐nucleating agent and the small size and few intercrossing bands among the boundaries of β‐spherulites for iPPs with large amounts of β‐nucleating agent from the SEM examination. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
The mechanical and thermal characteristics and morphology of polyamide 6 (PA6)/isotactic polypropylene (iPP) blends (10/90 w/w) prepared with different processing procedures and incorporated with an aryl amide nucleating agent, a kind of β‐nucleating agent (β‐NA) for iPP, were investigated. The yield strength and flexural modulus of the blends decreased as β‐NA was introduced into the blends, whereas the impact strength and elongation at break improved. The crystalline structures of the blends closely depended on (1) the processing conditions and (2) competition between the β‐nucleating effect of β‐NA and the α‐nucleating effect of PA6 for iPP. Scanning electron microscopy, differential scanning calorimetry, and X‐ray diffraction were adopted to reveal the microstructures of the blends. At a low β‐NA content (<0.1 wt %), the α‐phase iPP dominated the blends, whereas the relative content of the β‐phase iPP increased remarkably when the β‐NA content was not less than 0.1 wt %. The processing conditions also showed profound influences on the supermolecular structures of iPP; this resulted in different mechanical properties of the blends. As for PA6, the crystallization behavior and crystalline structure did not exhibit obvious changes, but PA6 did play an important role in the epitaxial crystallization of iPP on PA6. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Compatibilized polypropylene (PP)/polyamide (PA6) blends with and without β nucleating agent (β‐NA) are prepared, and are designated as Blend‐0.3 and Blend‐0, respectively. The melting and crystallization characteristic of the blends crystallized under different cooling rates and different crystallization temperatures are studied. It is observed that high β‐PP content can be developed in Blend‐0.3 only at slow cooling rates (<5°C/min), whereas high α‐PP content is formed at fast cooling rates. Isothermal crystallization analysis of Blend‐0 indicates that PA6 is an effective NA for α‐PP in the lower temperature range, whereas the α‐nucleating effect disappears in the higher temperature range. Blend‐0.3 can, therefore, be viewed as a system containing both α‐ and β‐NAs, simultaneously. PA6 is competing with β‐NA in inducing PP crystallization. Under the normal injection of Blend‐0.3, the melt will be cooled through the higher temperature that favors the effectiveness of β‐NA rapidly because of the faster cooling rate. However, the α‐nucleation effect from PA6 predominate at the lower temperature. This explains the difficulty in obtaining high β‐PP content in Blend‐0.3 from injection molding. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

10.
The influence of a nonpigmenting β‐nucleating additive in the crystallization of isotactic polypropylene (iPP) is investigated by differential scanning calorimetry and X‐ray diffraction. It is found that this additive induces the formation of a very high level of the trigonal modification of iPP. The crystallization and melting behavior of the nucleated systems are studied as a function of the cooling and heating rates and the control of the final temperature during the cooling process. The nucleating agent exerts an important effect on the crystallization temperatures and the polymorphic transitions of iPP, delaying the β–α recrystallization process through an increase in the stability of the trigonal crystals. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 531–539, 2002  相似文献   

11.
The nucleation ability of isotactic poly(propylene) (iPP) to ammonium 2,2′‐methylene‐bis‐(4,6‐di‐t‐butylphenylene) phosphate (An) was investigated in the present work comparing with sodium 2,2′‐methylene‐bis‐(4,6‐di‐t‐butylphenylene) phosphate (NA‐11). Scanning electron microscope (SEM) revealed the crystalline morphology of both An and NA‐11 with planar surface characteristics. The observation of the fracture surface of nucleation iPP samples by SEM showed An particles were dispersed uniformly in polymer and had a better compatibility with iPP matrix than NA‐11 particles. Differential scanning calorimeter (DSC) showed that the melting temperature of An was 262°C significantly lower than that measured from NA‐11 group (above 400°C). Crystallization behaviors of iPP/NA‐11 and iPP/An were also investigated by DSC analysis, respectively. The results showed the crystallization peak temperature and the crystallinity of iPP/An were almost near to that of iPP/NA‐11. Furthermore, mechanical and optical properties of iPP were strongly improved in the presences of An and NA‐11. The flexural strength of iPP was elevated 34 and 35% and the haze value was reduced from 40.4 to 15.1 and 14.9% by the addition of 0.15 wt% NA‐11 and An, respectively. These results demonstrate that the nucleating agent of An described here is a good nucleating agent for the crystallization of iPP as well as NA‐11. POLYM. ENG. SCI., 55: 22–28, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
A novel highly active β‐nucleating agent, β‐cyclodextrin complex with lanthanum (β‐CD‐MAH‐La), was introduced to isotactic polypropylene (iPP). Its influence on isothermal crystallization and melting behavior of iPP was investigated by differential scanning calorimeter (DSC), wide‐angle X‐ray diffraction (WAXD), and polarized light microscopy (PLM). WAXD results demonstrated that β‐CD‐MAH‐La was an effective β‐nucleating agent, with β‐crystal content of iPP being strongly influenced by the content of β‐CD‐MAH‐La and the isothermal crystallization temperature. The isothermal crystallization kinetics of pure iPP and iPP/β‐CD‐MAH‐La was described appropriately by Avrami equation, and results revealed that β‐CD‐MAH‐La promoted heterogeneous nucleation and accelerated the crystallization of iPP. In addition, the equilibrium melting temperature (T) of samples was determined using linear and nonlinear Hoffman‐Weeks procedure. Finally, the Lauritzen‐Hoffman secondary nucleation theory was applied to calculate the nucleation parameter (Kg) and the fold surface energy (σe), the value of which verify that the addition of β‐CD‐MAH‐La reduced the creation of new surface for β‐crystal and then led to faster crystallization rate. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
BACKGROUND: It is a challenge for polymer processing to promote the formation of γ‐phase under atmospheric conditions in isotactic polypropylene (iPP) copolymer containing chain errors. Incorporation of an α‐nucleator in iPP copolymer seems reasonable since it can enhance non‐isothermal crystallization. Up to now, however, the issue regarding a β‐nucleated iPP copolymer still remains unclear, which is the subject of this study. RESULTS: The results indicate that the γ‐phase indeed occurs in a β‐nucleated random iPP copolymer with ethylene co‐unit (PPR) sample and becomes predominant at slow cooling rates (e.g. 1 °C min?1) where the formation of the β‐form is suppressed to a large extent. With detailed morphological observations the formation of γ‐phase in the β‐nucleated PPR sample at slow cooling rate is unambiguously attributed to the nucleating duality of the β‐nucleator towards α‐ and β‐polymorphs. The α‐crystals, induced by the β‐nucleator, serve as seeds for the predominant growth of the γ‐phase. Moreover, the presence of the β‐nucleator, acting as heterogeneous nuclei, promotes the formation of γ‐phase in the nucleated PPR sample, at least to some extent. CONCLUSION: The findings in this study extend our insights into the formation of γ‐phase in β‐nucleated iPP copolymer and, most importantly, provide an alternative route to obtain iPP rich in γ‐phase. Copyright © 2008 Society of Chemical Industry  相似文献   

14.
The nucleating ability of halloysite nanotubes (HNTs) towards isotactic polypropylene (iPP) was investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD), polarized optical microscopy (POM) and scanning electron microscopy (SEM). HNTs are identified to have dual nucleating ability for α-iPP and β-iPP under appropriate kinetics conditions. The formation of β-iPP is dependent on the HNTs loading in the iPP/HNTs composites. The composite with 20 phr of HNTs is found to have the highest content of β-iPP. Under non-isothermal crystallization the content of β-iPP increases with decreasing of the cooling rate. The maximum β-crystal content is obtained at cooling rate of 2.5 °C/min. The supermolecular structure of the β-iPP is identified as β-hedrites with flower-cup-like and axialite-like arrangements of the lamellae. Under isothermal crystallization the β-crystal can be formed in the temperature range of 115-140 °C. Outside the temperature range, no β-iPP can be observed. The content of β-crystal reaches the maximum value at crystallization temperature of 135 °C. The formation of the β-iPP in the composites is correlated to the unique surface characteristics of the HNTs.  相似文献   

15.
To obtain isotactic polypropylene (iPP) nanocomposites with high β‐crystal content, TMB5, calcium pimelate and calcium pimelate supported on the surface of nano‐CaCO3 were used as β‐nucleating agent and MWCNT filled β‐nucleated iPP nanocomposites were prepared. The effect of different β‐nucleating agent and MWCNT on the crystallization behavior and morphology, melting characteristic and β‐crystal content of β‐nucleated iPP nanocomposites were investigated by DSC, XRD and POM. The results indicated that addition of MWCNT increased the crystallization temperature of iPP and MWCNT filled iPP nanocomposites mainly formed α‐crystal. The β‐nucleating agent can induce the formation of β‐crystal in MWCNT filled iPP nanocomposites. The β‐nucleating ability and β‐crystal content in MWCNT filled β‐nucleated iPP nanocomposites decreased with increasing MWCNT content and increased with increasing β‐nucleating agent content due to the nucleation competition between MWCNT and β‐nucleating agents. It is found that the calcium pimelate supported on the surface of inorganic particles as β‐nucleating agent has stronger heterogeneous β‐nucleation than calcium pimelate and TMB5. The MWCNT filled iPP nanocomposites with high β‐crystal content can be obtained by supported β‐nucleating agent. POLYM. COMPOS., 36:635–643, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
In order to increase the isotactic content of β‐nucleated polypropylene (β‐iPP) and decrease the cost of its production, the investigation and development of novel highly efficient β‐nucleators are important issues. Nano‐CaCO3 was used as a support to prepare a supported β‐nucleator, nano‐CaCO3‐supported calcium pimelate. Fourier transform infrared spectral analysis shows that an in situ chemical reaction takes place between nano‐CaCO3 and pimelic acid. Differential scanning calorimetry results indicate that the crystallization and melting temperatures of β‐phase in supported β‐nucleator‐nucleated iPP are higher than those of calcium pimelate‐nucleated iPP. The β‐nucleating ability of the supported β‐nucleator is little influenced by the cooling rate and crystallization temperature over a wide range. The decreased content of pimelic acid in the supported β‐nucleator slightly decreases the crystallization temperature of iPP but it has no influence on the content of β‐phase in nucleated iPP. A novel supported β‐nucleator has been successfully synthesized via pimelic acid supported on the surface of CaCO3. The crystallization temperature of iPP and melting temperature of β‐phase in iPP nucleated using the supported β‐nucleator are higher than those of iPP nucleated using calcium pimelate. The concept of a supported nucleator will provide a new way to increase the efficiency of polymer additives and to decrease the amounts of them that need to be used by using nanoparticles as supports. Copyright © 2010 Society of Chemical Industry  相似文献   

17.
This article deals with the crystallization behaviors of original (prepared in a torque rheometer), DSC crystallization and mold crystallization (quenching and slow nonisothermal crystallization) of isotactic polypropylene (iPP) mixed with β‐form nucleating agent. The microstructure and thermal stability of these samples were investigated. The wide angle X‐ray diffraction (WAXD) results indicate that fast cooling is favorable for β‐form iPP formation. With slower cooling rate and higher concentration of nucleating agent, the lamellar thickness and stability of crystal0s were enhanced. Polarized optical microscopy (POM) and scanning electron microscopy (SEM) both showed that rapid crystallized samples gave rise to tiny spherulites, whereas under slow crystallization condition, nucleated samples could be fully developed in the form of dendritic or transcrystalline structures, depending on the nucleating agent concentration. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
N,N′‐Bis(benzoyl) suberic acid dihydrazide (NA) as nucleating agent for poly(L ‐lactic acid) (PLLA) was synthesized from benzoyl hydrazine and suberoyl chloride, which was deprived from suberic acid via acylation. PLLA/NA samples were prepared by melt blending and a hot‐press forming process. The nonisothermal and isothermal crystallization, spherulite morphology, and melting behavior of PLLA/NA with different contents of NA were investigated with differential scanning calorimetry, depolarized‐light intensity measurement, scanning electron microscopy, polarized optical microscopy, and wide‐angle X‐ray diffraction. With the incorporation of NA, the crystallization peak became sharper and shifted to a higher temperature as the degree of supercooling decreased at a cooling rate of 1°C/min from the melt. Nonisothermal crystallization indicated that the presence of NA accelerated the overall PLLA crystallization. In isothermal crystallization from the melt, the presence of NA affected the isothermal crystalline behaviors of PLLA remarkably. The addition of NA led to a shorter crystallization time and a faster overall crystallization rate; this meant that there was a heterogeneous nucleation effect of NA on the crystallization of PLLA. With the addition of 0.8% NA, the crystallization half‐time of PLLA/NA decreased from 26.5 to 1.4 min at 115°C. The Avrami theory was used to describe the kinetics of isothermal crystallization of the PLLA/NA samples. Also, with the presence of NA, the spherulite number of PLLA increased, and the spherulite size decreased significantly. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

19.
l ‐Isoleucine (l ‐Ile) was identified as an efficient anti‐nucleating agent for isotactic polypropylene (iPP). At 0.08 wt %, l ‐Ile could significantly decrease the peak crystallization temperature (Tcp) of iPP by up to 8 °C at a cooling rate of 20 °C/min. Furthermore, l ‐Ile exhibited both anti‐nucleation and pro‐nucleation abilities; i.e., a low content of l ‐Ile inhibited iPP crystallization, whereas a high content promoted iPP crystallization. The unique crystallization behavior of iPP in the presence of l ‐Ile was investigated by differential scanning calorimetry, polarized optical microscopy (POM), and rheological measurement. According to POM, a low content of l ‐Ile completely dissolved in the iPP melt, whereas a high content of l ‐Ile did not. Therefore, a mechanism by which l ‐Ile inhibits and promotes the nucleation of iPP was proposed. Dissolving l ‐Ile molecules in the iPP melt hindered the homogeneous nucleation of iPP as a “dilution effect”; however, as the content increases, l ‐Ile could not be completely dissolved in molten iPP, and the residual crystals of l ‐Ile thus provided heterogeneous nucleation sites for iPP and further promoted its crystallization. Experimental evidence from rheology and POM supported this mechanism. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45956.  相似文献   

20.
β‐isotactic polypropylene (β‐iPP) cylindritic crystals were produced in homogeneous iPP fiber–matrix composites and heterogeneous polyamide (PA)–iPP fiber–matrix composites under different sample preparation conditions. The melt recrystallization behaviors of the β‐iPP crystals obtained in the homogeneous and heterogeneous composites were studied by optical microscopy. The experimental results show that, by heating the sample to 180 °C, the birefringence contributed by the iPP crystals in both α‐ and β‐forms disappears completely. During the cooling process, the β‐iPP crystals in the homogeneous composite appear again, while the iPP in the heterogeneous composite crystallizes in its α‐form. This demonstrates the different origins of the β‐iPP cylindrites in the homogeneous and heterogeneous composites. While the β‐iPP cylindrites in the heterogeneous composite are associated with the sample preparation procedure, the β‐iPP cylindrites in the homogeneous composite are produced by recrystallization of the molten but incompletely relaxed iPP fibers. In situ observation of the melt recrystallization process shows that the molten iPP oriented fibers crystallize first during the cooling process at relatively higher temperature in the α‐form. Abundant randomly dispersed β‐iPP nuclei formed at the surface of the recrystallized iPP fibers, which generate the β‐iPP cylindrites. Copyright © 2012 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号