首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Hsp90 is required for the normal function of steroid receptors, but its binding to steroid receptors is mediated by Hsc70 and several hsp-associated accessory proteins. An assortment of Hsp90 mutants were tested for their abilities to interact with each of the following accessories: Hop, Cyp40, FKBP52, FKBP51, and p23. Of the 11 Hsp90 mutants tested, all were defective to some extent in associating with progestin (PR) complexes. In every case, however, reduced PR binding correlated with a defect in binding of one or more accessories. Co-precipitation of mutant Hsp90 forms with individual accessories was used to map Hsp90 sequences required for accessory protein interactions. Mutation of Hsp90's highly conserved C-terminal EEVD to AAVD resulted in diminished interactions with several accessory proteins, most particularly with Hop. Deletion of amino acids 661-677 resulted in loss of Hsp90 dimerization and also caused diminished interactions with all accessory proteins. Binding of p23 mapped most strongly to the N-terminal ATP-binding domain of Hsp90 while binding of TPR proteins mapped to the C-terminal half of Hsp90. These results and others further suggest that the N- and C-terminal regions of Hsp90 maintain important conformational links through intramolecular interactions and/or intermolecular influences in homodimers.  相似文献   

2.
The modulation of the chaperone activity of the heat shock cognate Hsc70 protein in mammalian cells involves cooperation with chaperone cofactors, such as Hsp40; BAG-1; the Hsc70-interacting protein, Hip; and the Hsc70-Hsp90-organizing protein, Hop. By employing the yeast two-hybrid system and in vitro interaction assays, we have provided insight into the structural basis that underlies Hsc70's cooperation with different cofactors. The carboxy-terminal domain of Hsc70, previously shown to form a lid over the peptide binding pocket of the chaperone protein, mediates the interaction of Hsc70 with Hsp40 and Hop. Remarkably, the two cofactors bind to the carboxy terminus of Hsc70 in a noncompetitive manner, revealing the existence of distinct binding sites for Hsp40 and Hop within this domain. In contrast, Hip interacts exclusively with the amino-terminal ATPase domain of Hsc70. Hence, Hsc70 possesses separate nonoverlapping binding sites for Hsp40, Hip, and Hop. This appears to enable the chaperone protein to cooperate simultaneously with multiple cofactors. On the other hand, BAG-1 and Hip have recently been shown to compete in binding to the ATPase domain. Our data thus establish the existence of a network of cooperating and competing cofactors regulating the chaperone activity of Hsc70 in the mammalian cell.  相似文献   

3.
The 70 kDa heat shock family of molecular chaperones is essential to a variety of cellular processes, yet it is unclear how these proteins are regulated in vivo. We present evidence that the protein BAG-1 is a potential modulator of the molecular chaperones, Hsp70 and Hsc70. BAG-1 binds to the ATPase domain of Hsp70 and Hsc70, without requirement for their carboxy-terminal peptide-binding domain, and can be co-immunoprecipitated with Hsp/Hsc70 from cell lysates. Purified BAG-1 and Hsp/Hsc70 efficiently form heteromeric complexes in vitro. BAG-1 inhibits Hsp/Hsc70-mediated in vitro refolding of an unfolded protein substrate, whereas BAG-1 mutants that fail to bind Hsp/Hsc70 do not affect chaperone activity. The binding of BAG-1 to one of its known cellular targets, Bcl-2, in cell lysates was found to be dependent on ATP, consistent with the possible involvement of Hsp/Hsc70 in complex formation. Overexpression of BAG-1 also protected certain cell lines from heat shock-induced cell death. The identification of Hsp/Hsc70 as a partner protein for BAG-1 may explain the diverse interactions observed between BAG-1 and several other proteins, including Raf-1, steroid hormone receptors and certain tyrosine kinase growth factor receptors. The inhibitory effects of BAG-1 on Hsp/Hsc70 chaperone activity suggest that BAG-1 represents a novel type of chaperone regulatory proteins and thus suggest a link between cell signaling, cell death and the stress response.  相似文献   

4.
5.
Ydj1 is a member of the Hsp40 (DnaJ-related) chaperone family that facilitates cellular protein folding by regulating Hsp70 ATPase activity and binding unfolded polypeptides. Ydj1 contains four conserved subdomains that appear to represent functional units. To define the action of these regions, protease-resistant Ydj1 fragments and Ydj1 mutants were analyzed for activities exhibited by the unmodified protein. The Ydj1 mutant proteins analyzed were unable to support growth of yeast at elevated temperatures and were found to have alterations in the J-domain (Ydj1 H34Q), zinc finger-like region (Ydj1 C159T), and conserved carboxyl terminus (Ydj1 G315D). Fragment Ydj1 (1-90) contains the J-domain and a small portion of the G/F-rich region and could regulate Hsp70 ATPase activity but could not suppress the aggregation of the model protein rhodanese. Ydj1 H34Q could not regulate the ATPase activity of Hsp70 but could bind unfolded polypeptides. The J-domain functions independently and was sufficient to regulate Hsp70 ATPase activity. Fragment Ydj1 (179-384) could suppress rhodanese aggregation but was unable to regulate Hsp70. Ydj1 (179-384) contains the conserved carboxyl terminus of DnaJ but is missing the J-domain, G/F-rich region, and a major portion of the zinc finger-like region. Ydj1 G315D exhibited severe defects in its ability to suppress rhodanese aggregation and form complexes with unfolded luciferase. The conserved carboxyl terminus of Ydj1 appeared to participate in the binding of unfolded polypeptides. Ydj1 C159T could form stable complexes with unfolded proteins and suppress protein aggregation but was inefficient at refolding denatured luciferase. The zinc finger-like region of Ydj1 appeared to function in conjunction with the conserved carboxyl terminus to fold proteins. However, Ydj1 does not require an intact zinc finger-like region to bind unfolded polypeptides. These data suggest that the combined functions of the J-domain, zinc finger-like region, and the conserved carboxyl terminus are required for Ydj1 to cooperate with Hsp70 and facilitate protein folding in the cell.  相似文献   

6.
7.
In the oomycete fungus Achlya ambisexualis, hyphae of the male strain undergo sexual differentiation in the presence of the steroid hormone antheridiol. Earlier studies demonstrated that antheridiol binds with high affinity to a 9S multiprotein complex from A. ambisexualis cytosols. Although these complexes were found to contain the heat shock protein Hsp90, the other components were not known. It was of interest to determine if any of the other protein components in the Achlya Hsp90-heterocomplexes would be homologous to those found in the steroid receptor-Hsp90-heterocomplexes of vertebrates. Cytosolic proteins of 110 kDa, 74 kDa, 64 kDa, 61 kDa, 56 kDa, 47 kDa, 27 kDa and 23 kDa, were found in repeated trials, to co-immunoprecipitate with Achlya Hsp90. The 74 kDa protein was identified as the heat shock protein Hsp70, the 23 kDa protein was found to be related to the vertebrate protein p23 and the 56 kDa protein was found to be related to immunophilin FKBP51. All three of these proteins are components of the vertebrate receptor heterocomplexes. The 110 kDa, 61 kDa and 27 kDa proteins appeared to be unique to the Achlya complexes. Unlike the seven other proteins co-immunoprecipitating with Hsp90, the 61 kDa protein was observed only in the co-immunoprecipitates produced from in vitro translates of RNA isolated from antheridiol-treated mycelia.  相似文献   

8.
Heat shock proteins (Hsps) are a group of highly conserved proteins, that are constitutively expressed in most cells under normal physiological conditions. Previous work from our laboratory has shown that neurons in the adult brain exhibit high levels of Hsp90 and Hsc70 mRNA and protein, as well as basal levels of Hsp70 mRNA. We have now investigated the expression of Hsp90, Hsc70, Hsp60 and Hsp70 in neural and non-neural tissues of the rat during postnatal development, a time of extensive cell differentiation. Western blot analysis revealed constitutive expression of these Hsps early in postnatal development. Developmental profiles of these Hsps suggest that they are differentially regulated during postnatal development of the rat. For example, while levels of Hsp90 decrease somewhat in certain developing brain regions, levels of Hsp60 show a developmental increase, and Hsc70 protein is abundant throughout postnatal neural development. Low basal levels of Hsp70 are also observed in the developing and adult brain. A pronounced decrease in Hsp90 and Hsc70 was observed during postnatal development of the kidney while levels of Hsp60 increased. In addition, tissue-specific differences in the relative levels of these Hsps between brain and non-brain regions were found. Immunocytochemical studies demonstrated a neuronal localization of Hsp90, Hsc70 and Hsp60 at all stages of postnatal development examined as well as in the adult, suggesting a role for Hsps in both the developing and fully differentiated neuron. The developmental expression of subunit IV of cytochrome oxidase was similar to that of Hsp60, a protein localized predominantly to mitochondria.  相似文献   

9.
The mechanism by which ATP binding transduces a conformational change in 70-kDa heat shock proteins that results in release of bound peptides remains obscure. Wei and Hendershot demonstrated that mutating Thr37 of hamster BiP to glycine impeded the ATP-induced conformational change, as monitored by proteolysis [(1995) J. Biol. Chem. 270, 26670-26676]. We have mutated the equivalent resitude of the bovine heat shock cognate protein (Hsc70), Thr13, to serine, valine, and glycine. Solution small-angle X-ray scattering experiments on a 60-kDa fragment of Hsc70 show that ATP binding induces a conformational change in the T13S mutant but not the T13V or T13G mutants. The kinetics of ATP-induced tryptophan fluorescence intensity changes in the 60-kDa proteins is biphasic for the T13S mutant but monophasic for T13V or T13G, consistent with a conformational change following initial ATP binding in the T13S mutant but not the other two. Crystallographic structures of the ATPase fragments of the T13S and T13G mutants at 1.7 A resolution show that the mutations do not disrupt the ATP binding site and that the serine hydroxyl mimics the threonine hydroxyl in the wild-type structure. We conclude that the hydroxyl of Thr13 is essential for coupling ATP binding to a conformational change in Hsc70. Molecular modeling suggests this may result from the threonine hydroxyl hydrogen-bonding to a gamma-phosphate oxygen of ATP, thereby inducing a structural shift within the ATPase domain that couples to its interactions with the peptide binding domain.  相似文献   

10.
The hormone-binding domain of the glucocorticoid receptor must be bound to heat shock protein (hsp) 90 for it to have a high-affinity steroid-binding conformation. Cell-free assembly of a glucocorticoid receptor-hsp90 heterocomplex is brought about in reticulocyte lysate by a preformed protein-folding complex containing hsp90, hsp70, and other proteins [Hutchison, K.A., Dittmar, K. D., & Pratt, W.B. (1994) J. Biol. Chem. 269, 27894-27899]. In this "foldosome" system, hsp70 is required for assembly of the receptor-hsp90 complex and concomitant activation of steroid-binding activity [Hutchison, K.A., Dittmar, K.D., Czar, M.J., & Pratt, W.B. (1994) J. Biol. Chem. 269, 22157-22161]. All previous experiments involving cell-free assembly of both receptor-hsp90 and protein kinase-hsp90 heterocomplexes have been carried out with the protein-folding system in rabbit reticulocyte lysate. In this work, we show that concentrated lysates of receptor-free mouse (L cells) and insect (Sf9) cells and also a plant (wheat germ) lysate fold the immunopurified glucocorticoid receptor into a functional (i.e., steroid binding) heterocomplex with hsp90. Receptor heterocomplex formation in animal lysates and in the plant lysate are not identical in that the dynamics of complex assembly are different, but both systems produce a functional complex that binds steroid. Also, in contrast to animal and insect complexes, receptor-plant hsp90 complexes are not stabilized by molybdate. When added to the other lysate, purified plant and animal hsp90s show partial complementarity, in that a receptor-hsp90 complex is formed but the receptor is not converted to the steroid-binding conformation. When added to rabbit reticulocyte lysate that has been depleted of endogenous hsp70, purified wheat germ and mouse hsp70's are equally active in promoting both assembly of receptor-hsp90 heterocomplexes and conversion of receptor to the steroid-binding conformation. Thus, hsp70 from the plant kingdom has conserved the ability to interact functionally with chaperone proteins of the animal kingdom to cooperate in protein folding as evidenced by formation of a functional receptor-hsp90 heterocomplex.  相似文献   

11.
Several mammalian genes, including heat shock protein (Hsp70) and prion protein (PrP) genes, have been reported to have long open reading frames (ORFs) or non-stop reading frames (NRFs) in the antisense direction. A simple explanation would be that these long antisense reading frames, which are usually in the same triplet frame as the coding strand, are the fortuitous byproduct of a high overall [G+C] content with concomitant preference for G/C over A/T in the third codon position, a preference for RNY type codons (purine/any nucleotide/pyrimidine), and/or a bias against serine and leucine, the only amino acids with codons that can be read as stop codons in the antisense direction. The PrP genes and most heat shock genes with long antisense NRFs (aNRFs) are indeed relatively [G+C] rich but do not show a bias against serine and leucine. In several vertebrates investigated, at least one of the Hsp70 genes has a long antisense reading frame, and we found that some, though not all, putative stop codons in long Hsp70 antisense reading frames were due to sequencing errors. The PrP gene contains an extended antisense open reading frame in all 45 eutherian mammals tested, but not in a marsupial and in a bird. In the PrP gene, the long, protein-coding exon also harbors the antisense nonstop reading frame. In both Hsp70 and PrP genes, the putative antisense protein sequence is well conserved. Even though there is no clear evidence in Hsp70 or PrP genes for the existence of the respective antisense proteins, we speculate that such antisense proteins serve to regulate the genuine Hsp and PrP proteins under special circumstances. Alternatively, regulation might occur at the RNA level, and the antisense RNA would merely lack stop codons to prevent its rapid degradation by an mRNA quality control mechanism that is triggered by premature stop codons. We note that both Hsp and PrP are involved in physiological or pathological protein aggregation phenomena, that scrapie prions have been reported to modify the expression or localization of heat shock proteins, and that in yeast, propagation of a prion-like state (PSI+) depends on a heat shock (Hsp104) protein.  相似文献   

12.
In cytosols from animal and plant cells, the abundant heat shock protein hsp90 is associated with several proteins that act together to assemble steroid receptors into receptor.hsp90 heterocomplexes. We have reconstituted a minimal receptor.hsp90 assembly system containing four required components, hsp90, hsp70, p60, and p23 (Dittmar, K. D., Hutchison, K. A., Owens-Grillo, J. K., and Pratt, W. B. (1996) J. Biol. Chem. 271, 12833-12839). We have shown that hsp90, p60, and hsp70 are sufficient for carrying out the folding change that converts the glucocorticoid receptor (GR) hormone binding domain (HBD) from a non-steroid binding to a steroid binding conformation, but to form stable GR.hsp90 heterocomplexes, p23 must also be present in the incubation mix (Dittmar, K. D., and Pratt, W. B. (1997) J. Biol. Chem. 272, 13047-13054). In this work, we show that addition of p23 to native GR.hsp90 heterocomplexes immunoadsorbed from L cell cytosol or to GR.hsp90 heterocomplexes prepared with the minimal (hsp90.p60.hsp70) assembly system inhibits both receptor heterocomplex disassembly and loss of steroid binding activity. p23 stabilizes the GR.hsp90 heterocomplex in a dynamic and ATP-independent manner. In contrast to hsp90 that is bound to the GR, free hsp90 binds p23 in an ATP-dependent manner, and hsp90 in the hsp90.p60.hsp70 heterocomplex is in a conformation that does not bind p23 at all. The effect of p23 in the minimal GR heterocomplex assembly system is to stabilize GR.hsp90 heterocomplexes once they are formed and it does not appear to affect the rate of heterocomplex assembly. Molybdate has the same ability as p23 to stabilize GR heterocomplexes with mammalian hsp90, but GR heterocomplexes with plant hsp90 are stabilized by p23 and not by molybdate. We propose that incubation of the GR with hsp90.p60.hsp70 forms a GR.hsp90 heterocomplex in which hsp90 is in an ATP-dependent conformation. The ATP-dependent conformation of hsp90 is required for the hormone binding domain to have a steroid binding site, and binding of p23 to that state of hsp90 stabilizes the GR.hsp90 heterocomplex to inactivation and disassembly.  相似文献   

13.
Hsp70 molecular chaperones are highly conserved ATPases that guide the folding and assembly of proteins in many cellular pathways. They use the energy of ATP binding and hydrolysis to regulate their interactions with hydrophobic regions of unfolded proteins. The activities and the conformations of the N-terminal nucleotide- and C-terminal polypeptide-binding domains of Hsp70s are coupled. We recently reported that the sulfhydryl-modifying reagent N-ethylmaleimide (NEM) inactivates the yeast Hsp70 Ssa1p by reacting with its three cysteine residues which are located in the nucleotide-binding domain. To further characterize conformational changes associated with interdomain coupling and to determine whether NEM alters Ssa1p's conformation, the structures of Ssa1p and NEM-modified Ssa1p (NEM-Ssa1p) were compared using a variety of biophysical techniques. Size exclusion chromatography revealed that NEM-Ssa1p is more oligomeric and more resistant to nucleotide- or polypeptide-dependent depolymerization than Ssa1p. Measurement of the thermal stability indicated that NEM modification has an effect very similar to that of binding of nucleotides to the unmodified protein. Circular dichroism demonstrated small differences in the secondary structure of Ssa1p and NEM-Ssa1p, and in their complexes with nucleotides. NEM modification increased the ANS fluorescence of Ssa1p and exposed numerous trypsin-sensitive sites in its nucleotide-binding domain. The intrinsic fluorescence of Ssa1p's only tryptophan residue, which is located in a C-terminal alpha-helical region adjacent to the polypeptide-binding cleft, was quenched in the presence of ATP, but not ADP. NEM modification altered nucleotide-dependent changes in the intrinsic fluorescence of Ssa1p. Together, these results demonstrate that NEM alters the conformation of Ssa1p and disrupts, but does not eliminate, interdomain communication. Furthermore, the results provide evidence for a model in which the polypeptide-binding cleft of Hsp70s is covered by an alpha-helical lid that is open in the presence of ATP, but closed in the presence of ADP.  相似文献   

14.
Unliganded steroid receptors exist as heteromeric complexes comprised of heat shock and immunophilin proteins that associate either directly or indirectly with receptor carboxyl-terminal ligand-binding domains. Molecular chaperons, and other proteins associated with steroid receptors, play an important role in the maturation of receptors to a hormone-binding competent state. Steroid receptor-associated 90 and 70 kDa heat shock proteins, hsp90 and hsp70, respectively, have well established roles in protein folding in addition to participating in numerous subcellular trafficking pathways. In this review, we discuss the possible roles that molecular chaperons, such as hsp90, hsp70 and DnaJ proteins, have in steroid receptor trafficking within two distinct subcellular compartments, i.e. the cytoplasm and nucleus.  相似文献   

15.
The substrate-specific protein chaperone Hsp90 (heat shock protein 90) from Saccharomyces cerevisiae functions in diverse signal transduction pathways. A mutation in YDJ1, a member of the DnaJ chaperone family, was recovered in a synthetic-lethal screen with Hsp90 mutants. In an otherwise wild-type background, the ydj1 mutation exerted strong and specific effects on three Hsp90 substrates, derepressing two (the estrogen and glucocorticoid receptors) and reducing the function of the third (the tyrosine kinase p60v-src). Analysis of one of these substrates, the glucocorticoid receptor, indicated that Ydj1 exerts its effects through physical interaction with Hsp90 substrates.  相似文献   

16.
The anti-cell death protein BAG-1 binds to 70-kDa heat shock proteins (Hsp70/Hsc70) and modulates their chaperone activity. Among other facilitory roles, BAG-1 may serve as a nucleotide exchange factor for Hsp70/Hsc70 family proteins and thus represents the first example of a eukaryotic homologue of the bacterial co-chaperone GrpE. In this study, the interactions between BAG-1 and Hsc70 are characterized and compared with the analogous GrpE-DnaK bacterial system. In contrast to GrpE, which binds DnaK as a dimer, BAG-1 binds to Hsc70 as a monomer with a 1:1 stoichiometry. Dynamic light scattering, sedimentation equilibrium, and circular dichroism measurements provided evidence that BAG-1 exists as an elongated, highly helical monomer in solution. Isothermal titration microcalorimetry was used to determine the complex stoichiometry and an equilibrium dissociation constant, KD, of 100 nM. Kinetic analysis using surface plasmon resonance yielded a KD consistent with the calorimetrically determined value. Molecular modeling permitted a comparison of structural features between the functionally homologous BAG-1 and GrpE proteins. These data were used to propose a mechanism for BAG-1 in the regulation of Hsp70/Hsc70 chaperone activity.  相似文献   

17.
18.
19.
Heat Shock Protein 70 kDa (Hsp70) family molecular chaperones play critical roles in protein folding and trafficking in all eukaryotic cells. The mechanisms by which Hsp70 family chaperones are regulated, however, are only partly understood. BAG-1 binds the ATPase domains of Hsp70 and Hsc70, modulating their chaperone activity and functioning as a competitive antagonist of the co-chaperone Hip. We describe the identification of a family of BAG-1-related proteins from humans (BAG-2, BAG-3, BAG-4, BAG-5), the invertebrate Caenorhabditis elegans (BAG-1, BAG-2), and the fission yeast Schizosaccharomyces pombe (BAG-1A, BAG-1B). These proteins all contain a conserved approximately 45-amino acid region near their C termini (the BAG domain) that binds Hsc70/Hsp70, but they differ widely in their N-terminal domains. The human BAG-1, BAG-2, and BAG-3 proteins bind with high affinity (KD congruent with 1-10 nM) to the ATPase domain of Hsc70 and inhibit its chaperone activity in a Hip-repressible manner. The findings suggest opportunities for specification and diversification of Hsp70/Hsc70 chaperone functions through interactions with various BAG-family proteins.  相似文献   

20.
Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90. We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84. The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90beta and was delineated further to a 124-residue COOH-terminal segment of hsp90. Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor-associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号