首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On-site greywater treatment and reuse in multi-storey buildings.   总被引:1,自引:0,他引:1  
The paper presents a study of a pilot plant treating light greywater for seven flats. The pilot plant combines biological treatment (RBC) with physicochemical treatment (sand filtration and disinfection). The pilot plant produced effluent of excellent quality, meeting the urban reuse quality regulations, and was very efficient in TSS turbidity and BOD removal: 82%, 98% and 96%, respectively. COD removal was somewhat lower (70-75%) indicating that the greywater may contain slowly-biodegradable organics. The RBC (attached growth biological system) was able to retain most of the solids as a result of bioflocculation; further it was proven to have very stable and reliable performance. Faecal coliforms and heterotrophic reductions were very high (100% and 99.99%, respectively) producing effluent that also met drinking water standards. The combination of low organic matter, nutrients and microbial indicators reduces the regrowth and fouling potentials in the reuse system, thus ensuring safe reuse of the treated greywater for toilet flushing.  相似文献   

2.
This paper evaluated the performance and suitability of a resources and nutrients oriented decentralized greywater treatment system which uses a submerged spiral wound module. This greywater treatment system is aimed at treating and recovering the resources present in the wastewater. The study revealed that the UF membrane filtration system was able to maintain a permeate flux between 6 and 10 L/m2/h. TOC can be reduced from the influent value of 161 to 28.6 mg/L in the permeate, meaning an average elimination rate of 83.4%. In addition, soluble nutrients such as ammonia and phosphorus can pass through the UF membrane and remain in the permeate. The total nitrogen and total phosphorus in the permeate were 16.7 and 6.7 mg/L respectively. The permeate was low in turbidity (below 1 NTU) and free of suspended solids and E. coli and had an excellent physical appearance. The permeate can be used in gardening and agriculture for irrigation and soil fertilization or alternatively for toilet flushing after disinfection. The retentate generated in this system can be treated with blackwater and kitchen waste in an anaerobic digester at a later stage for producing biogas or compost.  相似文献   

3.
This study analyses the reliability of an on-site MBR system for greywater treatment and reuse. To achieve this goal simulation was performed based on the IWA ASM1 model which was adapted to describe biological and physical mechanisms for MBR greywater treatment based systems. Model results were found to agree well with experimental data from an on site pilot greywater treatment plant, after which the calibrated model was used in a Monte Carlo mode for generating statistical data on the MBR system performance under different scenarios of failures and inflow loads variations. Effluents quality and their associated risks were successfully estimated.  相似文献   

4.
Estrogenic personal care products in a greywater reuse system.   总被引:1,自引:0,他引:1  
The occurrence and fate of parabens in a greywater system was assessed. The potential for removal of residual paraben concentrations in effluent greywater with chlorine dioxide was also investigated. The influent to the greywater plant was characterised by considerable variation, with concentrations from below the detection limit to 40 microg/L and the five commonly used parabens in consumer products were frequently detected. After the biological treatment only two paraben were detected with concentration from 65-120 ng/L. Chlorine dioxide treatment of the biologically treated effluent with dosages down to 0.75 mg/L resulted in more than 97% reduction of all parabens. Formation of the by-product chloroform was insignificant from the chlorine dioxide treatment.  相似文献   

5.
Onsite individual wastewater treatment systems can provide a financially attractive alternative to a sewer connection in locations far from the existing sewer network. These systems are, however, relatively new, and practical experiences, especially long-term field studies, are lacking. Therefore, a thorough study of two compact biofilm-based, aerobic onsite systems, both of five population equivalents, was started in 2001. The assessment of the treatment performance of these systems, as well as the maintenance requirements and the characterisation of the feed are of great importance for the better understanding of the systems in order to optimise their design and performance. This paper presents an evaluation and discussion of the start-up and a starvation period of the two studied systems, followed by a characterisation of the incoming wastewater using activated sludge respirometry experiments in the context of the assessment and improvement of the denitrification process. Individual wastewater treatment systems are characterised by a rather long start-up period of 70-120 days. An important characteristic during the start-up is the nitrite peak, which indicates the initiation of the nitrification process. The respirometric experiments reveal that the failing denitrification is probably caused by an insufficient amount of readily biodegradable COD in the influent.  相似文献   

6.
丰台区开发利用中水的调查与思考   总被引:1,自引:0,他引:1  
由国文 《北京水务》2004,(1):35-36,45
城市污水的再生利用,也称中水(其水质介于污水与可饮用水之间,固称中水)开发利用是开辟城市新水源,解决城市水资源紧缺和保护水环境的重要途径.目前,丰台区水资源严重匮乏及水环境不断恶化已成为制约丰台区经济社会可持续发展和人民生活水平不断提高的重要因素之一.因此,加大污水处理力度,充分开发利用中水资源具有现实意义.  相似文献   

7.
Simultaneous wastewater treatment and biological electricity generation.   总被引:20,自引:0,他引:20  
It is possible to directly generate electricity using bacteria while accomplishing wastewater treatment in processes based on microbial fuel cell technologies. When bacteria oxidize a substrate, they remove electrons. Current generation is made possible by keeping bacteria separated from oxygen, but allowing the bacteria growing on an anode to transfer electrons to the counter electrode (cathode) that is exposed to air. In this paper, several advances are discussed in this technology, and a calculation is made on the potential for electricity recovery. Assuming a town of 100,000 people generate 16.4 x 10(6) L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant if all the energy is recovered as electricity. So far, power densities are low, resulting in power generation rates of 150 kW/m2. Progress is being made that we believe may result in as much as 0.5 MW from wastewater treatment. The generation of electricity during wastewater treatment may profoundly affect the approach to anaerobic treatment technologies used in wastewater treatment.  相似文献   

8.
With the growth of urban areas and climate change, decisions need to be taken to improve water management. This paper reports an assessment of the impact of greywater recycling systems on catchment scale hydrological flows. A simulation model developed in InfoWorks CS (Wallingford Software Ltd) was used to evaluate how river flows, sewer flows, surface runoff and flooding events may be influenced when grey water recycling systems of different number and scale are implemented in a representative catchment. The simulations show the effectiveness of greywater recycling systems in reducing total wastewater volume and flood volume. However, no hydraulic impacts due to implementation of greywater was identified by the model.  相似文献   

9.
The UASB reactor (35 degrees C) was quite efficient for removal of bulk COD (52-74%) from the raw and diluted cultivation medium from the first separation process of baker's yeasts (the average organic loading rates varied in the range 3.7-16 g COD/I/d). The aerobic-anoxic biofilter (19-23 degrees C) can be used for removal of remaining BOD and ammonia from anaerobic effluents; however, it had insufficient COD to fulfil the denitrification requirements. To balance COD/N ratio, some bypass of raw wastewater (approximately 10%) should be added to the biofilter feed. The application of iron (III)-, aluminium- or calcium-induced coagulation for post-treatment of aerobic effluents can fulfil the limits for discharge to sewerage (even for colour mainly exerted by hardly biodegradable melanoidins), however, the required amounts of coagulants were relatively high.  相似文献   

10.
This paper describes the performance of reedbeds using plastic (PET) bottle segments as an alternative low-cost media for the treatment of domestic greywater in Monteverde, Costa Rica, Central America. Twelve reedbeds consisting of four sets of triplicates were monitored through wet and dry seasons in order to determine the effect of media type (PET versus crushed rock) and the effect of plants. In both seasons, performance of the planted reedbeds with PET media, for BOD and fecal coliform removal, was either comparable to, or better than, that of the crushed rock systems. The planted PET reedbeds achieved fecal coliform removal rates > 99.9% in all cases equating to reductions of between 3 and nearly 5 log, with an average BOD outflow of 12.9 mg/L over both seasons. The hydraulic loading rate varied between 1.33 and 2.67 cm/day and hydraulic retention times (HRT) ranged from 3.5 to 7.5 days. The six reedbeds planted with Coix lacryma-jobi proved to be significantly more effective in pathogen removal and BOD reduction than the unplanted reedbeds. The planted PET reedbeds also increased their biomass by twice that of the planted crushed rock reedbeds during the study period. The majority of this increase was shown to be due to root growth. This paper discusses the implications of the above results for developing countries and identifies potential areas for further research.  相似文献   

11.
A sequencing batch reactor (SBR) was operated for enhanced biological phosphorus removal (EBPR) and dramatic differences to the P removing capabilities were obtained in different stages of the operation. At one stage extremely poor P removal occurred and it appeared that bacteria inhibiting P removal overwhelmed the reactor performance. Changes were made to the reactor operation and these led to the development of a sludge with high P removing capability. This latter sludge was analysed by fluorescent in situ hybridisation (FISH) using a probe specific for Acinetobacter. Very few cells were detected with this probe indicating that Acinetobacter played an insignificant role in the P removal occurring here. Analysis of the chemical transformations of three sludges supported the biochemical pathways proposed for EBPR and non-EBPR systems in biological models. A change in operation that led to the improved P removal performance included permitting the pH to rise in the anaerobic periods of the SBR cycle.  相似文献   

12.
This study investigated the effects of irrigation with different types of waters on soil, plants, and public health. The test plant was ryegrass grown in 12 planters filled with sandy loam soil and irrigated with three types of waters (4 planters for each type): freshwater, raw domestic light greywater (GW), and treated domestic light GW. The sodium adsorption ratio (SAR), EC, pH and alkalinity of the three types of irrigation waters did not differ significantly, suggesting that raw or treated light GW should not exhibit negative effects. Concentrations of anionic and cationic surfactants in the freshwater and the treated GW were about the same, while their concentrations in the raw GW were higher. Surfactant levels in the three drainage water types were low. Some accumulation of surfactants occurred in planters irrigated with raw and treated GW. The COD of the drainage water of planters irrigated with raw GW was higher than the COD of other two drainage water types. Although raw and treated GW contained faecal coliforms, they were hardly detected in the drainage waters. All plants did not show any signs of stress. This may be due to the fact that the GW originated mainly from showers and washbasins.  相似文献   

13.
This work aimed at determining the degree of depuration of a recalcitrant effluent (weak black liquor, WBL) achieved in a series treatment consisting of a first stage methanogenic fluidised bed reactor followed by a second stage aerobic, upflow reactor packed with "biocubes" of Trametes versicolor immobilised onto small cubes of holm oak wood. The mesophilic, lab scale methanogenic fluidised bed reactor contained a microbial consortium immobilised onto granular activated carbon 500 microm average size. The process removed decreasing amounts of organic matter at decreasing hydraulic retention times (HRT), eventually reaching an average of 50% at 0.5 day HRT. Colour and ligninoid removals also decreased with decreasing HRT. Although the methanogenic fluidised bed reactor provided an effective treatment for the degradable organic matter, important concentrations of recalcitrant organic matter and colour still remained in the anaerobic effluent. This anaerobic effluent was fed to the aerobic packed bed reactor. Two HRT were tested in this unit, namely 5 and 2.5 days. The reactor averaged an organic matter removal in the range of 32% COD basis, during an experimental run of 95 days. Colour and ligninoid contents were removed in high percentages (69% and 54%, respectively). There was no significant difference in reactor performance at 5- and 2.5-day HRT. There was a positive correlation between pollutant removal efficiencies and Laccase activity in crude extracts of the reactor liquor. No supplemental soluble carbohydrate was required to sustain the fungus activity and the consistent reactor performance. Overall, the two-stage treatment achieved approximately a 78% removal of the original organic matter of the WBL (COD basis) and ca. 75% of colour and ligninoid contents.  相似文献   

14.
Greywater is all domestic wastewater excluding toilet effluents. Detergents contain surfactants, which account for the highest concentration of organic chemicals in average domestic wastewater. Accumulation of surfactants in greywater-irrigated soils was determined in three household gardens. The effect of surfactants on capillary rise in loess and sand was then tested in the range of concentrations found in the garden soils. The capillary rise of freshwater in sieved oven-dried soil mixed with different concentrations of laundry detergent solution (10% w/w moisture content) was determined. In a second setup, the soil was mixed with freshwater and the rising solution contained different concentrations of detergent solution. The introduction of laundry solution to the soils caused a significant decrease in the capillary rise over the range of concentrations that is found in greywater-irrigated soils. The effect was more noticeable in the sand than in the loess. Interestingly, in the second setup, the capillary rise of the laundry solutions in the sand was almost similar to that of freshwater, whereas in the loess the capillary rise was significantly reduced. It is suggested that accumulation of surfactants in the soil might form water repellent soils that have a significant effect on agricultural productivity and environmental sustainability.  相似文献   

15.
Olive oil extraction is one of the most important traditional food industries in the Mediterranean region, especially in Italy. In addition to olive oil, this industry produces by-products, in particular olive mill wastewaters (OMWs) and olive husks, which represent a serious environmental problem. OMWs can be rarely treated in a municipal WWTP, using conventional wastewater treatments. A novel biological process has to be considered in order to treat OMWs. Literature data show that yeasts and different kinds of fungi are able to reduce both the organic and the phenolic content of the OMW. The present work is aimed at investigating the growth of a biomass rich in fungi in a batch reactor filled with OMW and its capacity to degrade the organic and phenolic load. The aerobic OMW degradation obtained using this biomass reached a COD and TP removal efficiency of 86 and 70%, respectively. Respirometric tests have been carried out in order to measure the biomass activity on different substrates: OMW and phenolic compounds (gallic and p-coumaric acids). The polyphenolic biodegradation efficiency of fungi biomass was higher than the one of a non-acclimated activated sludge biomass. Fungi biomass was able to completely degrade pure phenolic compounds.  相似文献   

16.
Particle size distribution (PSD) via sequential filtration/ultrafiltration was used as the tool for COD fractionation and colour profiling of textile wastewaters before and after treatment. Profiles prior to treatment suggested PSD-based COD fingerprints characteristic for the influents. Treatment efficiencies were determined via comparing the profiles of the effluents from chemical- and biological-treatment to those of the corresponding influents. COD fingerprints of the wastewaters from the textile plants, applying different treatment alternatives, were different especially at the upper size range; yet profiles after treatment were similar, with the soluble fraction (< 2 nm) being almost the only apparent one. Half of the overall COD-removal via chemical treatment was at the particulate- and upper colloidal-ranges, revealing that this alternative was effective at higher ranges, but not at the soluble fraction. In contrast, biological treatment was effective at both ends of size distribution, with total removal at the particulate range and 50% elimination at the soluble portion. Overall colour content and PSD-based colour profiles of the influents were also different. Chemical treatment was successful in removing colour originating from the entire colloidal range, but was not efficient at the soluble fraction. Conversely, colour removal efficiency of biological treatment was moderate throughout the entire size spectrum.  相似文献   

17.
Colour discharges are gaining renewed focus in the pulp and paper industry as increasingly strict regulatory limits are placed on wastewater quality and aesthetics. In-mill process improvements, such as ECF bleaching and oxygen delignification, have decreased wastewater colour loadings. However, a survey of 12 pulp and paper mill systems found that effluent treatment using aerated stabilisation basins (ASB) leads to average increases in colour of 20-40%. In some instances, this phenomenon may even double the influent colour levels. Activated sludge systems did not produce a colour increase. The measured increases that follow ASB secondary treatment may be sufficient for a mill to fail prescribed discharge standards. A detailed field survey focusing on sections of an integrated bleached kraft mill ASB treatment system was undertaken. The average increase in colour at the final point of discharge was 45%. The major changes in colour concentration occurred in the inlet to the main treatment pond, and in polishing ponds that followed the main treatment pond. Both of these areas receive little or no aeration. No significant change was observed in the highly aerated main pond. These results, along with literature reports, suggested that redox conditions play a major role in influencing colour behaviour. To test this, two series of paired continuously stirred reactors were used to treat whole mill effluent from two ECF bleached kraft mills in parallel. The first series initially treated under anaerobic conditions, followed by an aerobic reactor, while the second series reversed this order. With the initial anaerobic stage, effluent colour increased by 18% and 19% for the first and second series respectively. Subsequent treatment by aerobic bacteria further increased colour by 14% and 6%, for a total increase of 32% and 25%. Initial aerobic treatment, however, did not lead to any significant change in colour for either effluent. Further anaerobic treatment following aerobic conditions produced only small increases in colour. These results are consistent with the ASB and activated sludge system survey, suggesting that anaerobic conditions at the head of treatment systems initiate the observed increases in effluent colour in ASB treatment systems.  相似文献   

18.
19.
During this study, a mathematical model simulating piggery wastewater treatment was developed, with the objective of process optimisation. To achieve this, the effect of temperature and free ammonia concentration on the nitrification rate were experimentally studied using respirometry. The maximum growth rates obtained were higher for ammonium-oxidising biomass than for nitrite-oxidising biomass for the temperatures above 20 degrees C; values at 35 degrees C were equal to 1.9 and 1.35 day(-1), respectively. No inhibition of nitrification was observed for free ammonia concentrations up to 50 mgN/L. Using these data with others experimental data obtained from a pilot-scale reactor to treat piggery wastewater, a model based on a modified version of the ASM1 was developed and calibrated. In order to model the nitrite accumulation observed, the ASM1 model was extended with a two-step nitrification and denitrification including nitrite as intermediate. Finally, the produced model called PiWaT1 demonstrated a good fit with the experimental data. In addition to the temperature, oxygen concentration was identified as an important factor influencing the nitrite accumulation during nitrification. Even if some improvements of the model are still necessary, this model can already be used for process improvement.  相似文献   

20.
An innovative technology for industrial wastewater treatment has been developed. The main focus of the new system is a transformation of persistent organic compounds (biorecalcitrant COD) into a biodegradable fraction, followed by high efficient biological elimination using specialised bacteria's. To fulfill these targets the Aqua-Biomant process integrates two treatment steps: an aerated biological upflow filter and a electrochemical oxidation technique using boron doped-diamond electrodes. The advantages of the process are high efficient COD removal with reduced energy consumption combined with low total residence time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号