共查询到19条相似文献,搜索用时 78 毫秒
1.
本文研究利用波束形成技术与跳频技术相结合,在存在宽带阻塞干扰以及跟踪干扰时,将信号与干扰在空域进行分离,提高跳频系统的抗干扰性能。指出利用空间平滑不仅可以有效抑制相干跟踪干扰,而且提高了波束的收敛速度。仿真结果证明了该方法的有效性。 相似文献
2.
3.
4.
5.
6.
本文研究利用波束形成技术与跳频技术相结合,在存在宽带阻塞干扰以及跟踪干扰时,将信号与干扰在空域进行分离,提高跳频系统的抗干扰性能。指出利用空间平滑不仅可以有效抑制相干跟踪干扰,而且提高了波束的收敛速度。仿真结果证明了该方法的有效性。 相似文献
7.
8.
本文叙述宽带自适应跳频控制器的原理及方案,频率集的配置,自适应跳频拒收门限及频点更新,跳频码序及同步等。有效地组织宽带自适应跳频系统能避开大部分固定和半因定性质的单频连续波干扰,使得移动卫星通信系统中实现高可靠性的数据传输。 相似文献
9.
自适应数字波束形成技术是一种以数字方法来实现波束形成的技术.它采用先进的数字信号处理技术对天线阵列信号进行处理,以获得优良的波束性能。本文在介绍自适应数字波束形成系统的基本组成和工作原理的同时,对其工程应用方面也做了较为详细的分析说明。 相似文献
10.
简要分析了跳频通信的基本特点和优点,通过计算和比较卫星通信常见的几种干扰方式(宽带噪声干扰、窄带噪声干扰和脉冲干扰)的处理增益和误码率,得出了脉冲干扰对跳频技术下的卫星通信具有较好的干扰效果这一结论,并给出了与理论分析相一致的仿真结果。 相似文献
11.
大型线阵自适应数字波束形成超低副瓣技术 总被引:5,自引:0,他引:5
自适应数字波束形成技术是现代阵列天线系统必须采用的关键技术。为了对付强有源干扰,现代相控阵雷达都必须具有自适应的干扰抑制能力。除了对抗有源干扰外,大部分雷达还要求具有强杂波背景下检测目标的能力,这就需要雷达天线具有低或超低副瓣电平。本文针对大型线阵,结合数字波束形成,讨论了在保证自适应干扰置零的前提下,如何控制自适应波束的副瓣电平,从而实现阵列系统的超低副瓣性能。 相似文献
12.
13.
This paper introduces new adaptive beamforming methods for nonstationary noise reduction, designed to be robust against broadband interfering signals. In particular, we propose combined beamforming schemes within a standard adaptive beamforming system, such as the generalized sidelobe canceller (GSC). The novelty of such combined adaptive beamformers relies on the use of different adaptive sidelobe cancelling structures which allow the system to achieve robustness in nonstationary noisy environments. The combined structures are based on the convex combination of two multiple-input single-output (MISO) adaptive systems with complementary capabilities. The whole beamformer benefits from such combination and results to be able to preserve the best properties of each system. We introduce two different adaptive schemes, whose difference lies in the way of combining the MISO systems. Moreover, we present a further adaptive beamforming scheme which generalizes the previous techniques, thus improving the robustness against nonstationary interfering signals in multisource environments. The effectiveness of the proposed systems is also assessed in a nonstationary dense multipath environment. The experiments show that the proposed combined beamforming schemes are capable of enhancing the desired signal even in the presence of nonstationary interfering signals. 相似文献
14.
Robustness is typically understood as an ability of adaptive beamforming algorithm to achieve high performance in the situations with imperfect, incomplete, or erroneous knowledge about the source, propagation media, and antenna array. It is also desired to achieve high performance with as little as possible prior information. In the last decade, several fruitful principles to minimum variance distortionless response (MVDR) robust adaptive beamforming (RAB) design have been developed and successfully applied to solve a number of problems in a wide range of applications. Such principles of MVDR RAB design are summarized here in a single paper. Prof. Gershman has actively participated in the development and applications of a number of such MVDR RAB design principles. 相似文献
15.
相干信号源自适应波束形成 总被引:2,自引:0,他引:2
介绍了常规自适应波束形成的一般理论,并在此基础上分析了期望信号与干扰信号相干时常规自适应波束形成失效原理,引入了空间平滑技术,给出了空间平滑技术去相干的原理和在自适应波束形成上的应用,同时给出了计算机仿真结果。 相似文献
16.
For a large-scale adaptive array, heavy computational load and high-rate data transmission are two challenges in the implementation of an adaptive digital beamforming system. Moreover, the large-scale array becomes extremely sensitive to array imperfections. First, based on a restructured recursive linearly constrained minimum variance algorithm and a gradient-based optimization method, a new robust recursive linearly constrained minimum variance (RRLCMV) algorithm is proposed in this paper. The computational load of the RRLCMV algorithm is on the order of o(N), which is less than that of the conventional gradient-based robust adaptive algorithm. Then, a new efficient parallel robust recursive linearly constrained minimum variance (PRRLCMV) adaptive algorithm is proposed by appropriately partitioning the RRLCMV algorithm into a number of operational modules. It can be easily executed in a distributed-parallel-processing fashion, sequentially and in parallel. As a result, the PRRLCMV algorithm provides an effective solution that can alleviate the bottleneck of high-rate data transmission and reduce the computational cost. Finally, an implementation scheme of the PRRLCMV algorithm based on a distributed-parallel-processing system is also proposed. The simulation results demonstrate that the new PRRLCMV algorithm can significantly reduce the degradation due to various array errors. 相似文献
17.
自适应空域滤波通过波束控制,能有效地抑制空间干扰、增强有用信号。但在相干干扰环境中,其接收性能大大下降。从理论上推导了相干干扰能使信号源数估计成功概率下降、波达方向估计出现偏差、波束形成性能降低,并通过仿真实验进行了验证。 相似文献
18.
This paper deals with the problem of robust adaptive array beamforming using signal cyclostationarity. The constrained cyclic adaptive beamforming (C-CAB) algorithm presented by Wu and Wong (1996) [6] has been shown to be effective in performing adaptive beamforming without requiring the direction vector or the waveform of the desired signal. However, this algorithm suffers from severe performance degradation even if there is a small mismatch in the cycle frequency of the desired signal. In this paper, we first evaluate the performance degradation of the C-CAB algorithm in the presence of cycle frequency error (CFE). A novel compensation method in conjunction with the subspace projection is then proposed to tackle the problem due to CFE. We reconstruct the required cyclic conjugate correlation matrix by using a compensation matrix to cope with the deterioration of its dominant singular value when CFE exists. Finally, several simulation examples are provided to show the effectiveness of the proposed algorithm. 相似文献