共查询到20条相似文献,搜索用时 15 毫秒
1.
In this article, we have examined the physical and mechanical properties of poly(vinyl chloride) (PVC)/α‐methyl‐styrene‐acrylonitrile (αMSAN; 31 wt % AN concentrations) blends with different blend ratios. And, we also examined the effect of the molecular weights of PVC on the miscibility and material properties of the blends prepared by melt extrusion blending. Our results showed that the PVC/αMSAN blends have good processing properties and good miscibility over all blend ratios because of the strong interaction between PVC and αMSAN. And, the blends showed enhanced mechanical and thermal properties. In addition, high molecular weight PVC showed reasonable processability when melt blended with αMSAN, which resulted in enhanced mechanical and physical properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
2.
Toughening modification of (Acrylonitrile‐styrene‐acrylic copolymer)/(α‐Methylstyrene‐acrylonitrile copolymer) binary blend via using different impact modifiers 下载免费PDF全文
In this work, different impact modifiers such as acrylic resin impact modifier, chlorinated polyethylene (CPE), nitrile rubber, powdered nitrile rubber, and hydrogenated nitrile rubber, were chosen to improve the toughness of (acrylonitrile‐styrene‐acrylic copolymer)/(α‐methylstyrene‐acrylonitrile copolymer) (ASA/α‐MSAN) binary blend. The blend ratios of the ASA/(α‐MSAN)/(impact modifier) ternary system were 30/70/20 and 70/30/20 by mass, respectively. The results showed that the impact strength significantly increased, nearly 30 times (22.59 kJ·m?2, 22.26 kJ·m?2, and 25.24 kJ·m?2) compared with that of control samples (0.80 kJ·m?2) when nitrile rubber, powdered nitrile rubber, or hydrogenated nitrile rubber was added to the ASA/(α‐MSAN) (30/70) matrix, respectively. Moreover, the impact strength of ASA/(α‐MSAN) (70/30) was dramatically enhanced to 46 kJ·m?2 with the addition of 20 parts by weight per hundred parts of resin of chlorinated polyethylene. The toughness of ASA/(α‐MSAN) with or without impact modifiers was also characterized via fracture energy calculated from stress‐strain curves. The results were perfectly consistent with that of impact strength. The results of dynamic mechanical analysis demonstrated the existence of α‐MSAN (glass transition temperature at approximately 140°C). The heat distortion temperature was barely changed, indicating the addition of impact modifiers barely affects the heat resistance. J. VINYL ADDIT. TECHNOL., 22:326–335, 2016. © 2014 Society of Plastics Engineers 相似文献
3.
High‐impact toughness poly(vinyl chloride)/(α‐methylstyrene)‐acrylonitrile‐butadiene‐styrene copolymer/acrylic resin blends: Thermal properties and toughening mechanism 下载免费PDF全文
High impact toughness poly(vinyl chloride) (PVC)/(α‐methylstyrene)‐acrylonitrile‐butadiene‐styrene copolymer (70/30)/acrylic resin (ACR) blends were prepared. Incorporation of ACR did not play a negative role in thermal properties. The glass transition temperature, heat distortion temperature, and thermal stability remained constant as ACR content increased. With the addition of 10 phr (parts by weight per hundred parts of resin) of ACR, the impact strength increased by 20.0 times and 7.2 times compared with that of pure PVC and that of PVC/(α‐methylstyrene)‐acrylonitrile‐butadiene‐styrene copolymer (70/30) blends, respectively. However, tensile strength and flexural properties decreased. The morphology changed from domain distortions to crazing with fibrillar plastic deformation as ACR content increased. The toughening mechanism varied from “shear yielding” to “craze with shear yielding,” which depended on the content of ACR. This study presents the finding that addition of ACR drastically improved impact toughness without sacrificing any heat resistance, and the enhanced impact strength could be at the same level of supertough nylon. J. VINYL ADDIT. TECHNOL., 21:205–214, 2015. © 2014 Society of Plastics Engineers 相似文献
4.
Toughening modification of poly(vinyl chloride)/ α‐methylstyrene‐acrylonitrile‐butadiene‐styrene copolymer blends via adding chlorinated polyethylene 下载免费PDF全文
In this study, poly (vinyl chloride) (PVC)/α‐methylstyrene‐acrylonitrile‐butadiene‐styrene copolymer (AMS‐ABS) (70/30)/chlorinated polyethylene (CPE) ternary blends was prepared. With the addition of CPE, it did not exert a negative influence in both the glass transition temperature and heat distortion temperature. Thermogravimetric analysis showed that addition of CPE did not play a negative role in the thermal stability. With regard to mechanical properties, high toughness was observed combined with the decrease in tensile strength and flexural strength. With the addition of 15 phr CPE, the impact strength increased by about 21.0 times and 8.5 times in comparison with pure PVC and PVC/AMS‐ABS (70/30) blends, respectively. The morphology correlated well with the impact strength. It was also suggested from the morphology that shear yielding was the major toughening mechanisms for the ternary blends. And there existed a change in the fibril structures that are observed in scanning electron microphotographs. Our present study shows that combination of AMS‐ABS and CPE improves the toughness without sacrificing the heat resistance, and the value of notched impact strength can be enhanced to the same level of super‐tough nylon. POLYM. ENG. SCI., 54:378–385, 2014. © 2013 Society of Plastics Engineers 相似文献
5.
The mechanical and heat‐resistant properties of acrylonitrile–butadiene–styrene (ABS) binary and ternary blends were investigated. The relationship of compatibility and properties was discussed. The results show that poly(methyl methacrylate) (PMMA) and styrene–maleic anhydride (SMA) can improve the thermal properties of conventional ABS. The Izod impact property of ABS/PMMA blends increases significantly with the addition of PMMA, whereas that of ABS/SMA blends decreases significantly with the addition of SMA. Blends mixed with high‐viscosity PMMA are characterized by higher heat‐distortion temperature (HDT), and their heat resistance is similar to that of blends mixed with SMA. For high‐viscosity PMMA, from 10 to 20%, it is clear that blends appear at the brittle–ductile transition, which is related to the compatibility of the two phases. TEM micrographs show low‐content and high‐viscosity PMMA in large, abnormally shaped forms in the matrix. Compatibility between PMMA and ABS is dependent on both the amount and the viscosity of PMMA. When the amount of high‐viscosity PMMA varied from 10 to 20 wt %, the morphology of the ABS binary blends varied from poor to satisfactory compatibility. As the viscosity of PMMA decreases, the critical amount of PMMA needed for the compatibility of the two phases also decreases. SMA, as a compatibilizer, improved the interfacial adhesiveness of ABS and PMMA, which results in PMMA having good dispersion in the matrix. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2652–2660, 2002 相似文献
6.
Binary blends of poly(vinyl chloride) (PVC) with α‐methylstyrene‐acrylonitrile‐butadiene‐styrene copolymer (AMS‐ABS) were prepared via melt blending. A single glass transition temperature (Tg) was observed by differential scanning calorimetry, thus indicating that PVC is miscible with the α‐methylstyrene‐acrylonitrile‐styrene in AMS‐ABS. The results from attenuated total reflection Fourier transform infrared spectra indicated that specific strong interactions were not available in the blends. With increasing amounts of AMS‐ABS, both heat distortion temperature and thermal stability were increased considerably. With regard to mechanical properties, flexural and tensile properties decreased with increasing AMS‐ABS content. A synergism was observed in impact strength. The morphology of both impact‐fractured and tensile‐fractured surfaces, observed by scanning electron microscopy, correlated well with the mechanical properties. It is suggested that there was a transition of fracture mechanisms with the changing composition of the binary blends—from shear yielding for blends rich in PVC to cavitation for blends rich in AMS‐ABS. J. VINYL ADDIT. TECHNOL., 19:1–10, 2013. © 2013 Society of Plastics Engineers 相似文献
7.
In polymer blends, the composition and microcrystalline structure of the blend near surfaces can be markedly different from the bulk properties. In this study, the enzymatic degradation of poly(ε‐caprolactone) (PCL) and its blends with poly(styrene‐co‐acrylonitrile) (SAN) was conducted in a phosphate buffer solution containing Pseudomonas lipase, and the degradation behavior was correlated with the surface properties and crystalline microstructure of the blends. The enzymatic degradation preferentially took place at the amorphous part of PCL film. The melt‐quenched PCL film with low crystallinity and small lamellar thickness showed a higher degradation rate compared with isothermally crystallized (at 36, 40, and 44°C) PCL films. Also, there was a vast difference in the enzymatic degradation behavior of pure PCL and PCL/SAN blends. The pure PCL showed 100% weight loss in a very short time (i.e., 72 h), whereas the PCL/SAN blend containing just 1% SAN showed ~50% weight loss and the degradation ceased, and the blend containing 40% SAN showed almost no weight loss. These results suggest that as degradation proceeds, the nondegradable SAN content increases at the surface of PCL/SAN films and prevents the lipase from attacking the biodegradable PCL chains. This phenomenon was observed even for a very high PCL content in the blend samples. In the blend with low PCL content, the inaccessibility of the amorphous interphase with high SAN content prevented the attack of lipase on the lamellae of PCL. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 868–879, 2002 相似文献
8.
Dynamic viscoelastic properties for miscible blends of poly(?‐caprolactone) (PCL) and poly(styrene‐co‐acrylonitrile) (SAN) were measured. It was found that the time–temperature superposition principle is applicable over the entire temperature range studied for the blends. The temperature dependency of the shift factors aT can be expressed by the Williams–Landel–Ferry equation: log aT = ?8.86(T ? Ts)/(101.6 + T ? Ts). The compositional dependency of Ts represents the Gordon–Taylor equation. The zero‐shear viscosities are found to increase concavely upward with an increase in weight fraction of SAN at constant temperature, but concavely downward at constant free volume fraction. It is concluded that the relaxation behavior of the PCL/SAN blends is similar to that of a blend consisting of homologous polymers. It is emphasized that the viscoelastic functions of the miscible blends should be compared in the iso‐free volume state. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 2037–2041, 2001 相似文献
9.
Yuji Aoki 《应用聚合物科学杂志》2008,108(4):2206-2210
Dynamic viscoelastic properties of blends of poly(methyl methacrylate) (PMMA) and poly(styrene‐co‐acrylonitrile) (SAN) with various AN contents were measured to evaluate the influence of SAN composition, consequently χ parameter, upon the melt rheology. PMMA/SAN blends were miscible and exhibited a terminal flow region characterized by Newtonian flow, when the acrylonitrile (AN) content of SAN ranges from 10 to 27 wt %. Whereas, PMMA/SAN blends were immiscible and exhibited a long time relaxation, when the AN content in SAN is less than several wt % or greater than 30 wt %. Correspondingly, melt rheology of the blends was characterized by the plots of storage modulus G′ against loss modulus G″. Log G′ versus log G″ plots exhibited a straight line of slope 2 for the miscible blends, but did not show a straight line for the immiscible blends because of their long time relaxation mechanism. The plateau modulus, determined as the storage modulus G′ in the plateau zone at the frequency where tan δ is at maximum, varied linearly with the AN content of SAN irrespective of blend miscibility. This result indicates that the additivity rule holds well for the entanglement molecular weights in miscible PMMA/SAN blends. However, the entanglement molecular weights in immiscible blends should have “apparent” values, because the above method to determine the plateau modulus is not applicable for the immiscible blends. Effect of χ parameter on the plateau modulus of the miscible blends could not be found. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
10.
The aim of this work was to better understand the performance of binary blends of biodegradable aliphatic polyesters to overcome some limitations of the pure polymers (e.g., brittleness, low stiffness, and low toughness). Binary blends of poly(ε‐caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared by melt blending (in a twin‐screw extruder) followed by injection molding. The compositions ranged from pure biodegradable polymers to 25 wt % increments. Morphological characterization was performed with scanning electron microscopy and differential scanning calorimetry. The initial modulus, stress and strain at yield, strain at break, and impact toughness of the biodegradable polymer blends were investigated. The properties were described by models assuming different interfacial behaviors (e.g., good adhesion and no adhesion between the dissimilar materials). The results indicated that PCL behaved as a polymeric plasticizer to PLA and improved the flexibility and ductility of the blends, giving the blends higher impact toughness. The strain at break was effectively improved by the addition of PCL to PLA, and this was followed by a decrease in the stress at break. The two biodegradable polymers were proved to be immiscible but nevertheless showed some degree of adhesion between the two phases. This was also quantified by the mechanical property prediction models, which, in conjunction with material property characterization, allowed unambiguous detection of the interfacial behavior of the polymer blends. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 相似文献
11.
Ming Lu Jianjun Zhou Liansheng Wang Wei Zhao Yonglai Lu Liqun Zhang Yakang Liu 《应用聚合物科学杂志》2011,120(4):2459-2467
Crosslinked α‐methylstyrene and acrylonitrile (MStAN) copolymer particles in a latex form were synthesized by free radical emulsion polymerization. The particles took a spherical shape with an average size of 53.1 nm in a narrow distribution. When filled into styrene‐butadiene rubber (SBR), nitrile‐butadiene rubber (NBR), and natural rubber (NR), the MStAN nano‐particles exhibited excellent reinforcing capabilities and the best in NBR. By the employment of heat treatment, mechanical properties of the MStAN‐filled SBR composites had got remarkable further improvements. But mechanical properties, together with the morphology, of the MStAN‐filled NBR composites, varied little after heat treatment, which, however, divulged the naturally good compatibility between the MStAN particles and the NBR matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献
12.
Tetramethylpolycarbonate‐block‐poly(styrene‐co‐acrylonitrile) (TMPC‐block‐SAN) block copolymers containing various amounts of acrylonitrile (AN) were examined as compatibilizers for blends of polycarbonate (PC) with poly(styrene‐co‐acrylonitrile) (SAN) copolymers. To explore the effects of block copolymers on the compatibility of PC/SAN blends, the average diameter of the dispersed particles in the blend was measured with an image analyzer, and the interfacial properties of the blends were analyzed with an imbedded fibre retraction technique and an asymmetric double‐cantilever beam fracture test. Reduction in the average diameter of dispersed particles and effective improvement in the interfacial properties was observed by adding TMPC‐block‐SAN copolymers as compatibilizer of PC/SAN blend. TMPC‐block‐SAN copolymer was effective as a compatibilizer when the difference in the AN content of SAN copolymer and that of SAN block in TMPC‐block‐SAN copolymer was less than about 10 wt%. Copyright © 2004 Society of Chemical Industry 相似文献
13.
Nishar Hameed P. A. Sreekumar P. Selvin Thomas P. Jyotishkumar Sabu Thomas 《应用聚合物科学杂志》2008,110(6):3431-3438
Poly(styrene‐co‐acylonitrile) was used to modify diglycedyl ether of bisphenol‐A type epoxy resin cured with diamino diphenyl sulfone and the modified epoxy resin was used as the matrix for fiber‐reinforced composites (FRPs) to get improved mechanical properties. E‐glass fiber was used as fiber reinforcement. The tensile, flexural, and impact properties of the blends and composites were investigated. The blends exhibited considerable improvement in mechanical properties. The scanning electron micrographs of the fractured surfaces of the blends and tensile fractured surfaces of the composites were also analyzed. The micrographs showed the influence of morphology on the properties of blends. Results showed that the mechanical properties of glass FRPs increased gradually upon fiber loading. Predictive models were applied using various equations to compare the mechanical data obtained theoretically and experimentally. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 相似文献
14.
Ana Lúcia N. Da Silva Marisa C. G. Rocha Fernanda M. B. Coutinho Rosrio E. S. Bretas Carlos Scuracchio 《应用聚合物科学杂志》2001,79(9):1634-1639
Dynamic viscoelastic properties of binary blends consisting of an isotactic polypropylene (i‐PP) and ethylene‐1‐octene copolymer (PEE) were investigated to reveal the relation between miscibility in the molten state and the morphology in the solid state. In this study, PEE with 24 wt % of 1‐octene was employed. The PEE/PP blend with high PEE contents showed two separate glass‐relaxation processes associated with those of the pure components. These findings indicate that the blend presents a two‐phase morphology in the solid state as well as in the molten state. The PEE/PP blend with low PEE content showed a single glass‐relaxation process, indicating that PEE molecules were probably incorporated in the amorphous region of i‐PP in the solid state. The DMTA analysis showed that the blends with low PEE contents presented only one dispersion peak, indicating a certain degree of miscibility between the components of these blends. These results are in accordance with the results of the rheological analysis. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1634–1639, 2001 相似文献
15.
Swelling and mechanical properties of (acrylonitrile‐butadiene rubber)/(hydrogenated acrylonitrile‐butadiene rubber) blends with precipitated silica filled in gasohol fuels 下载免费PDF全文
Jantaraporn Promchim Sirichai Kanking Piyaporn Niltui Ekachai Wimolmala Narongrit Sombatsompop 《乙烯基与添加剂工艺杂志》2016,22(3):239-246
This work studied the effects of hydrogenated acrylonitrile‐butadiene rubber (HNBR) and precipitated silica (PSi) loadings in acrylonitrile‐butadiene rubber (NBR) filled with 60 parts per hundred of rubber (phr) of carbon black (CB) for oil‐resistant seal applications in contact with gasohol fuel. The cure characteristics, mechanical properties, and swelling behavior of HNBR/NBR blends reinforced with PSi before and after immersion in ethanol‐based oils (E10, E20, and E85) were then monitored. This work studied the effects of PSi loading in rubber compounds on the mechanical properties of the rubber blends. The results suggested that the scorch time of CB‐filled NBR/HNBR was not affected by HNBR loading, but the cure time, Mooney viscosity, and torque difference increased with HNBR content. The swelling of the blends in E85 oil were relatively low compared with those in E10 and E20 oils. The recommended NBR/HNBR blend ratio for oil‐resistant applications was 50/50. Tensile strength and elongation at break before and after immersion in gasohol oils increased with HNBR loading, and the opposite effect was found for tensile modulus and hardness. PSi filler had no effect on scorch time, but decreased the cure time of the blends. The swelling level of the blends slightly decreased with increasing PSi content. The recommended silica content for optimum reinforcement for black‐filled NBR/HNBR blend at 50/50 was 30 phr. The results in this work suggested that NBR/HNBR blends reinforced with 60 phr of CB and 30 phr of silica could be potentially used for rubber seals in contact with gasohol fuels. J. VINYL ADDIT. TECHNOL., 22:239–246, 2016. © 2014 Society of Plastics Engineers 相似文献
16.
Thermal properties of blends of poly(hydroxybutyrate‐co‐hydroxyvalerate) (PHBV) and poly(styrene‐co‐acrylonitrile) (SAN) prepared by solution casting were investigated by differential scanning calorimetry. In the study of PHBV‐SAN blends by differential scanning calorimetry, glass transition temperature and melting point of PHBV in the PHBV‐SAN blends were almost unchanged compared with those of the pure PHBV. This result indicates that the blends of PHBV and SAN are immiscible. However, crystallization temperature of the PHBV in the blends decreased approximately 9–15°. From the results of the Avrami analysis of PHBV in the PHBV‐SAN blends, crystallization rate constant of PHBV in the PHBV‐SAN blends decreased compared with that of the pure PHBV. From the above results, it is suggested that the nucleation of PHBV in the blends is suppressed by the addition of SAN. From the measured crystallization half time and degree of supercooling, interfacial free energy for the formation of heterogeneous nuclei of PHBV in the PHBV‐SAN blends was calculated and found to be 2360 (mN/m)3 for the pure PHBV and 2920–3120 (mN/m)3 for the blends. The values of interfacial free energy indicate that heterogeneity of PHBV in the PHBV‐SAN blends is deactivated by the SAN. This result is consistent with the results of crystallization temperature and crystallization rate constant of PHBV in the PHBV‐SAN blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 673–679, 2000 相似文献
17.
Mechanical and thermal properties of poly(butylene succinate)/poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) biodegradable blends 下载免费PDF全文
Biodegradable polymer blends of poly(butylene succinate) (PBS) and poly(3‐hydroxybutyrate‐co‐3‐hydroxyvalerate) (PHBV) were prepared with different compositions. The mechanical properties of the blends were studied through tensile testing and dynamic mechanical thermal analysis. The dependence of the elastic modulus and strength data on the blend composition was modeled on the basis of the equivalent box model. The fitting parameters indicated complete immiscibility between PBS and PHBV and a moderate adhesion level between them. The immiscibility of the parent phases was also evidenced by scanning electron observation of the prepared blends. The thermal properties of the blends were studied through differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The DSC results showed an enhancement of the crystallization behavior of PBS after it was blended with PHBV, whereas the thermal stability of PBS was reduced in the blends, as shown by the TGA thermograms. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42815. 相似文献
18.
Films of poly(ε‐caprolactone) (PCL) blends with α‐chitin and chitosan were prepared as completely biodegradable polyester/polysaccharide composites. DSC thermal analysis revealed that the crystallization of PCL was suppressed by blending with α‐chitin and chitosan. The specific interaction between PCL and polysaccharides was investigated by FTIR spectroscopy. The PCL carbonyl vibration bands could be resolved into three components: crystalline, amorphous and interacting. The FTIR spectra indicated that there were hydrogen bonding interactions between PCL and polysaccharides, and that polysaccharides suppressed the crystallization of PCL, consistent with the results obtained by DSC. © 2001 Society of Chemical Industry 相似文献
19.
The phase behavior and kinetics of phase separation for blends of the random copolymer poly(styrene‐co‐methyl methacrylate) (SMMA) and poly(styrene‐co‐acrylonitrile) (SAN) were studied by using small‐angle laser light scattering. The partially miscible SMMA/SAN blends undergo spinodal decomposition (SD) and subsequent domain coarsening when quenched inside the unstable region. For blends of SMMA and SAN, the early stages of the phase separation process could be observed, unlike a number of other blends where the earliest stages are not visible by light scattering. The process was described in terms of the Cahn–Hilliard linear theory. Subsequently, a coarsening process was detected and the time evolution of qm at the beginning of the late stages of phase separation followed the relationship qm∝t?1/3, corresponding to an evaporation–condensation mechanism. Self‐similar growth of the phase‐separated structures at different timescales was observed for the late stage. Copyright © 2004 Society of Chemical Industry 相似文献
20.
Copolymers obtained from radical copolymerization of α‐methylstyrene (AMS) and glycidyl methacrylate (GMA) behave as macroinitiators, when heated in the presence of a second monomer, giving rise to block copolymers. The relevant degradation and initiation polymerization mechanism of the macroinitiators were studied. Thermal depropagation of the macroinitiators generated monomers, identified by 1H‐NMR, photoionization mass spectroscopy and FT‐IR. According to the results of structure analysis by GPC, ESR and NMR spectroscopy, the AMS‐GMA (head‐head) and AMS‐AMS (head‐head) bonds in the macroinitiators are easily scissored providing free radicals when the temperature is above 80°C. The radicals lead to subsequent polymerization of the second monomer, and thereby block copolymers are formed. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 相似文献