首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermosetting polyurethane (PU) multi‐walled carbon nanotube (MWCNT) nanocomposites at loadings up to 1 wt % were prepared via an addition polymerization reaction. The morphology of the nanocomposites and degree of dispersion of the MWCNTs was studied using a combination of scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and wide angle X‐ray diffraction (WAXD), and revealed the nanotubes to be highly dispersed in the PU matrix. Addition of just 0.1 wt % MWCNTs resulted in significant enhancements in stiffness, strength and toughness. Increases in Young's modulus, % elongation at break and ultimate tensile strength of 561, 302 and 397% were measured for the nanocomposites compared to the unfilled PU. The effect of the MWCNTs on the modulus of the PU was evaluated using the Rule of Mixtures, Krenchel and Halpin‐Tsai models. Only the Halpin‐Tsai model applied to high aspect ratio nanotubes was in good agreement with the modulus values determined experimentally. Strong interfacial shear stress was found between PU chains and nanotubes, up to 439 MPa, calculated using a modified Kelly‐Tyson model. Evidence for strong interfacial interactions was obtained from the Raman spectra of both the precursor materials and nanocomposites. When the MWCNTs were added to the isophorone diisocyanate an up‐shift of 14 cm?1 and on average 40 cm?1 was obtained for the position of the carbon‐hydrogen (C? H) out‐of plane bending (766 cm?1) and isocyanate symmetric stretch (1420 cm?1) modes respectively. Moreover, an up‐shift of 24 cm?1 was recorded for the nanotube tangential mode (G‐band) for the 1.0 wt % nanocomposite because of the compressive forces of the PU matrix acting on the MWCNTs. The dynamic mechanical (DMA) properties of the PU thermoset and the nanocomposites were measured as a function of temperature. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

2.
The thermoplastic polyurethane/multiwalled carbon nanotube (TPU/CNT) nanocomposites with high conductivity and low percolation threshold value were prepared by melting blending and annealing treatment. The effect of annealing process on the microphase structure and the properties of TPU/CNT nanocomposites was studied. It has been shown that CNT flocculation can occur in TPU/CNT nanocomposites during the annealing process. At a critical CNT content, which defined the percolation threshold, CNTs could form conductivity network. The conductive percolation threshold value of TPU/CNT nanocomposites was decreased from 10 to 4% after annealing process, and the conductivity of TPU/CNT nanocomposites with 10 vol % of CNT could reach 1.1 S/m after an annealing time of 1 h. The significant enhancement of electrical conductivity was influenced by the annealing time and the content of CNTs. The formation of CNT networks was also verified by dynamic viscoelastic characterization. The results of X‐ray diffraction and differential scanning calorimetry indicated that annealing process reinforced the microphase separation of the nanocomposites. Mechanical properties test showed that the annealing treatment was in favor of improving the mechanical properties; however, further increase in the annealing time has negative effect on the mechanical properties. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
4.
Montmorillonite (MMT)–multiwalled carbon nanotube (MWCNT) hybrids were prepared in different weight ratios by simple dry grinding method and characterized. Subsequently, MMT–MWCNT (1:1) hybrid was used as reinforcing filler in developing thermoplastic polyurethane (TPU) nanocomposites by solution blending method. Thermogravimetric analysis showed that 0.25 wt% hybrid‐loaded TPU nanocomposite exhibited maximum enhancement of 31°C corresponding to 50 wt% loss in thermal stability when compared with neat TPU. Differential scanning calorimetry of this composite also indicated that its crystallization and melting temperatures are enhanced by 37 and 13°C, respectively. Mechanical data showed that tensile strength and Young's modulus of 0.50 wt% filled TPU were maximum improved by 57 and 87.5%, respectively. Dynamic mechanical analysis (DMA) measurements indicated 174% (50°C) improvement in storage modulus of 0.50 wt% hybrid‐loaded TPU. Such improvements in thermal and mechanical properties have been attributed to homogeneous dispersion, strong interfacial interaction, and synergistic effect. POLYM. COMPOS., 37:1775–1785, 2016. © 2014 Society of Plastics Engineers  相似文献   

5.
Shape‐memory polyurethane/multiwalled carbon nanotube (SMP–MWNT) composites with various multiwalled carbon nanotube (MWNT) contents were synthesized, and the corresponding SMP–MWNT fibers were prepared by melt spinning. The influence of the MWNT content on the spinnability, fracture morphology, thermal and mechanical properties, and shape‐memory behavior of the shape‐memory polymer was studied. The spinning ability of SMP–MWNTs decreased significantly with increasing MWNT content. When the MWNT content reached 8.0 wt %, the fibers could not be produced because of the poor rheological properties of the composites. The melt‐blending, extrusion, and melt‐spinning processes for the shape‐memory fiber (SMF), particularly at low MWNT contents, caused the nanotubes to distribute homogeneously and preferentially align along the drawing direction of the SMF. The crystallization in the SMF was promoted at low MWNT contents because it acted as a nucleation agent. At high MWNT contents, however, the crystallization was hindered because the movement of the polyurethane chains was restricted. The homogeneously distributed and aligned MWNTs preserved the SMF with high tenacity and initial modulus. The recovery ratio and recovery force were also improved because the MWNTs helped to store the internal elastic energy during stretching and fixing. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

6.
In the present work, chitosan (CS)‐grafted multiwalled carbon nanotube (MWCNT) nanocomposites were prepared via covalently bonded CS onto MWCNTs that had weight fractions of MWCNTs ranging from 0.1 to 3.0 wt % by a simple method of solution casting. The structure, morphology, and mechanical properties of the films were investigated by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, optical microscopy, wide‐angle X‐ray diffraction, contact angle, and tensile testing. The results indicated that the CS chains were attached onto the MWCNTs successfully via covalent linkages. More interestingly, the MWCNTs provided a matrix that facilitated the crystallization of CS. Compared with the pure CS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 39.6 to 105.6 MPa and from 2.01 to 4.22 GPa with an increase in the MWCNT loading level from 0 to 3.0 wt %, respectively. The improvement in the tensile strength and modulus were ascribed to the uniform dispersion of MWCNTs covalently linked to the CS matrix. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Smart nanocomposite aerogels have promising applications. In this work, different percentages of multiwall carbon nanotube (MWCNT) added into synthesized polyurethane (PU) gel in the molten state, using a two-roll mill. By soaking the PU/MWCNT nanocomposite gel into the water, PU/MWCNT hydrogels containing more than 90 wt % of water were prepared. The obtained hydrogels were freeze-dried to produce aerogel counterparts. The aerogels were fully characterized using mercury porosimetry, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and field emission scanning electron microscopy (FE-SEM). The electrical percolation threshold of conductive aerogel system was measured. The shape-memory behavior of PU/MWCNT nanocomposite aerogels was evaluated by dynamic mechanical thermal analysis (DMTA). The results of the DMTA showed that by adding 2.75 wt % of MWCNT, the recovery ratio and storage modulus of the PU/MWCNT nanocomposite aerogel increased 42 and 180%, respectively. The electrical conductivity of the system also increased three orders of magnitude at the percolation threshold. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48602.  相似文献   

8.
A spray drying approach has been used to prepare polyurethane/multiwalled carbon nanotube (PU/MWCNT) composites. By using this method, the MWCNTs can be dispersed homogeneously in the PU matrix in an attempt to improve the mechanical properties of the nanocomposites. The morphology of the resulting PU/MWCNT composites was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). SEM and TEM observations illustrate that the MWCNTs are dispersed finely and uniformly in the PU matrix. X‐ray diffraction results indicate that the microphase separation structure of the PU is slightly affected by the presence of the MWCNTs. The mechanical properties such as tensile strength, tensile modulus, elongation at break, and hardness of the nanocomposites were studied. The electrical and the thermal conductivity of the nanocomposites were also evaluated. The results show that both the electrical and the thermal conductivity increase with the increase of MWCNT loading. In addition, the percolation threshold value of the PU composites is significantly reduced to about 5 wt % because of the high aspect ratio of carbon nanotubes and exclusive effect of latex particles of PU emulsion in dispersion. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

9.
《Polymer Composites》2017,38(7):1319-1326
The effects of epoxy‐functionalized glass fiber (GF) on the electrical conductivity, crystallization behavior, thermal stability, and dynamic mechanical properties of polyoxymethylene (POM)/thermoplastic polyurethane (TPU)/multiwalled carbon nanotube (MWCNT) composites are investigated. The electrical resistivities of POM/5%−20% TPU/1% MWCNT composites are significantly reduced by nine orders of magnitude after the addition of 20% GF because of the formation of TPU‐coated GF structure facilitating the construction of conductive networks. GF has no obvious influence on the crystallization temperature, melting temperature, and degree of crystallinity of POM in POM/TPU/MWCNT composites because of their relatively bigger size compared with POM chains and MWCNTs. The storage moduli of POM/TPU/MWCNT composites are improved by the addition of GF, indicating that POM/TPU/MWCNT/GF composites are promising materials with good electrical and mechanical properties. POLYM. COMPOS., 38:1319–1326, 2017. © 2015 Society of Plastics Engineers  相似文献   

10.
Nanocomposites of thermoplastic polyurethanes (TPUs), multiwalled carbon nanotubes (MWCNTs) and clays were prepared via melt processing using polyether‐ and polyester‐based TPUs, MWCNTs, and organically modified nanoclays (Cloisite C30B and C25A). Coaddition of clays and MWCNTs to TPU nanocomposites increased their electrical conductivities above those without any clay. Nanoclay alone is shown to produce no effect on electrical conductivity. TEM results show that the coaddition of nanoclay affects the nanocomposite morphology by changing the MWCNT distribution. Clay C25A and MWCNTs were observed to form network structures in the nanocomposites, resulting in improved electrical conduction. Interaction between MWCNTs and clays as well as an increase in nanocomposite viscosity caused by the coaddition of clays may influence the morphology change. Most of the nanocomposites containing both MWCNTs and clay exhibited higher dielectric constants, indicating higher electrical conductivities. Tensile properties investigations confirmed the reinforcing effects of the MWCNTs and clays. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

11.
Multiwalled carbon nanotubes have been produced by ethylene catalytic chemical vapor deposition and used to fabricate thick and dense freestanding films (“buckypapers”) by membrane filtering. Field emission properties of buckypapers have been locally studied by means of high vacuum atomic force microscopy with a standard metallic cantilever used as anode to collect electrons emitted from the sample. Buckypapers showed an interesting linear dependence in the Fowler–Nordheim plots demonstrating their suitability as emitters. By precisely tuning the tip-sample distance in the submicron region we found out that the field enhancement factor is not affected by distance variations up to 2 μm. Finally, the study of current stability showed that the field emission current with intensity of about 3.3 × 10?5 A remains remarkably stable (within 5% fluctuations) for several hours.  相似文献   

12.
In this study, multiwalled carbon nanotube (MWCNT) and ethylene vinyl acetate copolymer (EVA) nanocomposite bulk foams were prepared for static dissipative applications by using melt compounding method, the most compatible with current industrial applications. Closed‐cell structure was verified with Scanning Electron Microscope. All the mechanical properties investigated improved with increasing content of MWCNT except elongation at break. At 5 phr of MWCNT, significant improvement of mechanical properties and compression set were observed. Also, the surface resistivity begins to decrease at 5 phr of MWCNT. Interestingly, the increase of surface resistivity of nanocomposite foams with 8 and 10 phr MWCNT were observed with increasing thickness of removed surface layers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
This study demonstrates the microscale and nanoscale mechanical properties of a multiwalled carbon nanotubes/polyether ether ketone (MWCNTs/PEEK) composite utilizing a novel in situ testing method. Nanoscale testing specimens of a composite of PEEK thin film dispersed with 6.5 wt% MWCNTs were successfully prepared using focused ion beam (FIB) and investigated by a tensile testing device accommodated inside a field emission scanning electron microscope. The average tensile strength of the nanocomposite was measured to be 388.66 MPa. The average Young's modulus measured at 6.52 GPa demonstrated a 23% increase compared to that of the bulk specimen, suggesting a size‐dependent mechanism that limits the plastic deformation of the microscale specimens possibly due to the limited defects distribution and motion constraint of the polymer chain in the small specimen and the amorphous regions of the PEEK matrix. POLYM. ENG. SCI., 59:1209–1214 2019. © 2019 Society of Plastics Engineers  相似文献   

14.
Well‐dispersed multiwalled carbon nanotubes/polyurethane (MWCNTs/PU) composites were synthesized in situ polymerization based on treating MWCNTs with nitric acid and silane coupling agent. The morphology and degree of dispersion of the MWCNTs were studied using a high resolution transmission electron microscopy (HR‐TEM) and X‐ray powder diffraction (XRD). The result showed that MWCNTs could be dispersed still in the PU matrix well with the addition of 2 wt% MWCNTs. The thermal and mechanical properties of the composites were characterized by dynamic mechanical thermal analysis, thermogravimetric analysis, tensile, and impact testing. The result suggested that the glass transition temperature (Tg) of composites increased greatly with increasing MWCNTs content slightly, and the MWCNTs is also helpful to improve mechanical properties of composites. Furthermore, the composites have an excellent mechanical property with the addition of 0.5 wt% MWCNTs. The electrical property testing indicates that the MWCNTs can improve evidently the electrical properties of composites when adding 1 wt% MWCNTs to the PU matrix. The volume resistivity of composites reaches to an equilibrium value. POLYM. COMPOS., 33:1866–1873, 2012. © 2012 Society of Plastics Engineers  相似文献   

15.
This study investigates the dielectric properties of multiwalled carbon nanotube (MWCNT)/polystyrene (PS) composites over the broadband frequency range, i.e., 10?1 to 106 Hz. The results showed that the real permittivity and imaginary permittivity increased remarkably with increased MWCNT concentration. For instance, at 100 Hz, the real permittivity and imaginary permittivity of the pristine PS was 2.71 and 0.01, respectively, which increased to 5.22 × 104 and 3.28 × 107 at 3.50 wt%, respectively. The increase in the real permittivity was related to the formation of a large number of nanocapacitor structures, i.e., MWCNTs as nanoelectrodes and polymer matrix as dielectric material, i.e., interfacial polarization. The increase in the imaginary permittivity with MWCNT loading was attributed greater number of dissipating charges, enhanced conductive network formation, and boosted polarization loss arising from interfacial polarization. It was also observed that the real and imaginary permittivities were frequency independent in the insulative region, whereas they decreased drastically with frequency in the conductive region. The descending trend of real permittivity with frequency in the conductive region was related to charge polarization relaxation, whereas the reduction in imaginary permittivity with frequency was attributed to lower Ohmic loss and polarization loss. POLYM. ENG. SCI., 55:173–179, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
Multiwalled carbon nanotube/polycaprolactone nanocomposites (MWNT/PCL) were prepared by in situ polymerization, whereby as‐received MWNTs (P‐MWNTs) and purified MWNTs (A‐MWNTs) were used as reinforcing materials. The A‐MWNTs were purified by nitric acid treatment, which introduced the carboxyl groups (COOH) on the MWNT. The micrographs of the fractured surfaces of the nanocomposites showed that the A‐MWNTs in A‐MWNT/PCL were better dispersed than P‐MWNTs in PCL matrix (P‐MWNT/PCL). Percolation thresholds of the P‐MWNT/PCL and A‐MWNT/PCL, which were studied by rheological properties, were found at ~2 wt % of the MWNT. The conductivity of the P‐MWNT/PCL was between 10?1 and 10?2 S/cm by loading of 2 wt % of MWNT although that of the A‐MWNT/PCL reached ~10?2 S/cm by loading of 7 wt % of MWNT. The conductivity of the P‐MWNT/PCL was higher than that of the A‐MWNT/PCL at the entire range of the studied MWNT loading, which might be due to the destruction of π‐network of the MWNT by acid treatment, although the A‐MWNT/PCL was better dispersed than the P‐MWNT/PCL. The amount of the MWNT at which the conductivity of the nanocomposite started to increase was strongly correlated with the percolation threshold. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1957–1963, 2007  相似文献   

17.
The multiwalled carbon nanotubes were directly compounded with poly(phenylene sulfide) (PPS) via melt mixing. The morphology and physical properties, including viscoelasticity, electrical conductivity, and thermal and mechanical properties, of the obtained composites were investigated. The results show that the purified nanotubes can be fully dispersed in the PPS matrix especially at low loading levels because of their good affinity. The composites hence present relative low rheological and electrical percolation thresholds. The presence of nanotubes, on the one hand, shows good reinforcement effect because of the strong interfacial interactions with the PPS matrix, which is confirmed by the strain overshoot flow behavior, and, on the other hand, acts as a nucleation agent, promoting crystallization of the PPS matrix. Both contribute to evident improvement of tensile strength and dynamic mechanical properties of the composites. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

18.
Multiwalled carbon nanotube (MWNT)–polyurethane (PU) composites were obtained by an in situ polycondensation approach. The effects of the number of functional groups on the dispersion and mechanical properties were investigated. The results showed that the functionalized MWNTs had more advantages for improving the dispersion and stability in water and N,N′‐dimethylformamide. The tensile strength and elongation at break of the composites exhibited obvious increases with the addition of MWNT contents below 1 wt % and then decreases with additions above 1 wt %. The maximum values of the tensile strength and elongation at break increased by 900 and 741%, respectively, at a 1 wt % loading of MWNTs. Differential scanning calorimetry measurements indicated that the addition of MWNTs resulted in an alteration of the glass‐transition temperature of the soft‐segment phase of MWNT–PU. Additionally, new peaks near 54°C were observed with differential scanning calorimetry because of the microphase‐separation structures and alteration of the segment molecular weights of the hard segment and soft segment of PU with the addition of MWNTs. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
The melt‐mixing polyamide 66 (PA66) composite samples that incorporated pure, acid‐ and amine‐functionalized multiwalled carbon nanotubes (MWCNTs) were prepared in order to enhance mechanical and frictional properties of PA66 composites. The homogeneous dispersion of amine‐functionalized MWCNTs (D‐MWCNTs) in PA66 matrix was observed from the significantly uniform morphology of tensile fractured surface of the composites. Differential scanning calorimetry measurement indicates that D‐MWCNTs acted as effective nucleation agent for PA66 matrix and the crystallinity of PA66 was increased. The fracture stress and tensile modulus of the composites were significantly improved with the incorporation of D‐MWCNTs, owing to the good dispersion of D‐MWCNTs. Compared with PA66, the PA66 composites with 1.0 wt% D‐MWCNTs were improved considerably in both wear and friction properties owing to the change of the tribological mechanisms. The good dispersion of D‐MWCNTs in PA66 and good interface compatibility between D‐MWCNTs and PA66 favored the formation of a thin layer on the contact surfaces during wear and friction test, which played an important role in reducing wear and friction of the composite and in suppressing the transverse cracks. These results prove the importance of D‐MWCNTs in a positive change of the mechanical and frictional properties of PA66 composites and suggest the applicability prospect of PA66/D‐MWCNTs composites in engineering components.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

20.
《Ceramics International》2022,48(2):2092-2096
SiC/SiC composites are the ideal candidates for hot-end components in aerospace and other high-tech fields. In recent years, as one type of material with simple structures, mini-composites have been widely used to study or initially verify the properties of ceramic matrix composites (CMC). Nevertheless, attentions were rarely paid on the influence of strain rate on the mechanical properties of mini-composites. In this study, based on mini-SiC/SiC composites, we investigated the effect of the strain rate on their tensile strength, initial tensile modulus, Weibull modulus, and fracture work. Furthermore, the underlying mechanisms were discussed and the exact constitutive model of the as-prepared mini-SiC/SiC composites was constructed according to the Michaelis-Menten and generalized linear models. This work can fill the gaps in the CMC research in some degree and provide a preliminary theoretical basis for the formulation of tensile properties test standards of mini-composites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号