首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates a new method for transient simulation of flow through a wind turbine using an actuator technique. The aim, in the context of wind turbine wake simulation, is to develop an alternative to the widely used actuator disc model with an increased resolution and range of applications, for the same or less computational expense. In this new model, the actuator sector method, forces applied to the fluid are distributed azimuthally to maintain a continuous flow solution for increased time‐step intervals compared with the actuator line method. Actuator sector results are presented in comparison with actuator disc and actuator line models initially for a non‐dimensionalized turbine in laminar onset flow. Subsequent results are presented for a turbine operating in a turbulent atmospheric boundary layer. Results show significant increases in flow fidelity compared with actuator disc model results; this includes the resolution of diametric variation in rotor loading caused by horizontal or vertical wind shear and the helical vortex system shed from the turbine blade tips. Significant reductions in computational processing time were achieved with wake velocities and turbulence statistics comparable with actuator line model results. The actuator sector method offers an improved alternative to applications employing conventional actuator disc models, with little or no additional computational cost. This technique in conjunction with a Cartesian mesh‐based parallel flow solver leads to efficient simulation of turbines in atmospheric boundary layer flows. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Accurate prediction of long‐term ‘characteristic’ loads associated with an ultimate limit state for design of a 5‐MW bottom‐supported offshore wind turbine is the focus of this study. Specifically, we focus on predicting the long‐term fore–aft tower bending moment at the mudline and the out‐of‐plane bending moment at the blade root of a monopile‐supported shallow‐water offshore wind turbine. We employ alternative probabilistic predictions of long‐term loads using inverse reliability procedures in establishing the characteristic loads for design. Because load variability depends on the environmental conditions (defining the wind speed and wave height), we show that long‐term predictions that explicitly account for such load variability are more accurate, especially for environmental states associated with above‐rated wind speeds and associated wave heights. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
In this paper we report the results of a workshop organised by the Delft University of Technology in 2014, aiming at the comparison between different state-of-the-art numerical models for the simulation of wind turbine wakes. The chosen benchmark case is a wind tunnel measurement, where stereoscopic Particle Image Velocimetry was employed to obtain the velocity field and turbulence statistics in the near wake of a two-bladed wind turbine model and of a porous disc, which mimics the numerical actuator used in the simulations. Researchers have been invited to simulate the experimental case based on the disc drag coefficient and the inflow characteristics. Four large eddy simulation (LES) codes from different institutions and a vortex model are part of the comparison. The purpose of this benchmark is to validate the numerical predictions of the flow field statistics in the near wake of an actuator disc, a case that is highly relevant for full wind farm applications. The comparison has shown that, despite its extreme simplicity, the vortex model is capable of reproducing the wake expansion and the centreline velocity with very high accuracy. Also all tested LES models are able to predict the velocity deficit in the very near wake well, contrary to what was expected from previous literature. However, the resolved velocity fluctuations in the LES are below the experimentally measured values.  相似文献   

4.
Wind turbines must be designed in such a way that they can survive in extreme environmental conditions. Therefore, it is important to accurately estimate the extreme design loads. This paper deals with a recently proposed method for obtaining short‐term extreme values for the dynamic responses of offshore fixed wind turbines. The 5 MW NREL wind turbine is mounted on a jacket structure (92 m high) at a water depth of 70 m at a northern offshore site in the North Sea. The hub height is 67 m above tower base or top of the jacket, i.e. 89 m above mean water level. The turbine response is numerically obtained by using the aerodynamic software HAWC2 and the hydrodynamic software USFOS . Two critical responses are discussed, the base shear force and the bending moment at the bottom of the jacket. The extreme structural responses are considered for wave‐induced and wind‐induced loads for a 100 year return‐period harsh metocean condition with a 14.0 m significant wave height, a 16 s peak spectral period, a 50 m s ? 1 (10 min average) wind speed (at the hub) and a turbulence intensity of 0.1 for a parked wind turbine. After performing the 10 min nonlinear dynamic simulations, a recently proposed extrapolation method is used for obtaining the extreme values of those responses over a period of 3 h. The sensitivity of the extremes to sample size is also studied. The extreme value statistics are estimated from the empirical mean upcrossing rates. This method together with other frequently used methods (i.e. the Weibull tail method and the global maxima method) is compared with the 3 h extreme values obtained directly from the time‐domain simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The protection of wind turbines from lightning damage is increasingly important as they increase in size and are placed in locations where access to carry out repairs may be difficult. As blades are the most common attachment point of lightning, they must be adequately protected. In addition, the passage of lightning current through wind turbine bearings introduces a risk of lightning damage to these vital components. Investigations relating to the improvement of blade lightning protection systems have been carried out, including experiments designed to address the difficult problems involved in the protection of hydraulic cylinders used for tip brake control. Work has also focused on the ability of lightning current to cause damage to wind turbine bearings. The work has been a mixture of computer simulations and experimental testing using high‐voltage and high‐current facilities. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
J. M. Tavares  P. Patrício 《风能》2020,23(4):1077-1084
According to the centenary Betz‐Joukowsky law, the power extracted from a wind turbine in open flow cannot exceed 16/27 of the wind transported kinetic energy rate. This limit is usually interpreted as an absolute theoretical upper bound for the power coefficient of all wind turbines, but it was derived in the special case of incompressible fluids. Following the same steps of Betz classical derivation, we model the turbine as an actuator disk in a one dimensional fluid flow but consider the general case of a compressible reversible fluid, such as air. In doing so, we are obliged to use not only the laws of mechanics but also and explicitly the laws of thermodynamics. We show that the power coefficient depends on the inlet wind Mach number , and that its maximum value exceeds the Betz‐Joukowsky limit. We have developed a series expansion for the maximum power coefficient in powers of the Mach number that unifies all the cases (compressible and incompressible) in the same simple expression: .  相似文献   

7.
8.
An analysis of the effect of low‐level wind maxima (LLWM) below hub height on sound propagating from wind turbines has been performed at a site in northern Sweden. The stably stratified boundary layer, which is typical for cold climates, commonly features LLWM. The simplified concept for the effects of refraction, based on the logarithmic wind profile or other approaches where the wind speed is continuously increasing with height, is often not applicable there. Long‐term meteorological measurements in the vicinity of a wind farm were therefore used to identify LLWM. Sound measurements were conducted simultaneously to the meteorological measurements. LLWM below hub height decrease the sound level close to the surface downwind of the wind farm. This effect increases with increasing strength of the LLWM. The occurrence of LLWM as well as strength and height of the LLWM are dependent on the wind direction.  相似文献   

9.
Emphasis of this article is on variable‐speed pitch‐controlled wind turbines with multi‐pole permanent magnet synchronous generator (PMSG) and on their extremely soft drive‐train shafts. A model and a control strategy for a full back‐to‐back converter wind turbine with multi‐pole PMSG are described. The model comprises submodels of the aerodynamic rotor, the drive‐train by a two‐mass model, the permanent magnet generator and the full‐scale converter system. The control strategy, which embraces both the wind turbine control itself and the control of the full‐scale converter, has tasks to control independently the active and reactive powers, to assist the power system and to ensure a stable normal operation of the wind turbine itself. A multi‐pole PMSG connected to the grid through a full‐scale converter has no inherent damping, and therefore, such configuration can become practically unstable, if no damping by means of external measures is applied. In this work, the frequency converter is designed to damp actively the drive‐train oscillations, thus ensuring stable operation. The dynamic performance of the presented model and control strategy is assessed and emphasized in normal operation conditions by means of simulations in the power system simulation tool DIgSILENT. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
A reduced‐order model for a wind turbine wake is sought from large eddy simulation data. Fluctuating velocity fields are combined in the correlation tensor to form the kernel of the proper orthogonal decomposition (POD). Proper orthogonal decomposition modes resulting from the decomposition represent the spatially coherent turbulence structures in the wind turbine wake; eigenvalues delineate the relative amount of turbulent kinetic energy associated with each mode. Back‐projecting the POD modes onto the velocity snapshots produces dynamic coefficients that express the amplitude of each mode in time. A reduced‐order model of the wind turbine wake (wakeROM) is defined through a series of polynomial parameters that quantify mode interaction and the evolution of each POD mode coefficients. The resulting system of ordinary differential equations models the wind turbine wake composed only of the large‐scale turbulent dynamics identified by the POD. Tikhonov regularization is used to recalibrate the dynamical system by adding additional constraints to the minimization seeking polynomial parameters, reducing error in the modeled mode coefficients. The wakeROM is periodically reinitialized with new initial conditions found by relating the incoming turbulent velocity to the POD mode coefficients through a series of open‐loop transfer functions. The wakeROM reproduces mode coefficients to within 25.2%, quantified through the normalized root‐mean‐square error.  A high‐level view of the modeling approach is provided as a platform to discuss promising research directions, alternate processes that could benefit stability and efficiency, and desired extensions of the wakeROM.  相似文献   

11.
So far, wind energy has not played a major role in the group of technologies for embedded generation in the built environment. However, the wind flow around conventional tall buildings generates differential pressures, which may cause an enhanced mass flow through a building‐integrated turbine. As a first step, a prototype of a small‐scale ducted wind turbine has been developed and tested, which seems to be feasible for integration into the leading roof edge of such a building. Here an experimental and numerical investigation of the flow through building‐integrated ducting is presented. Pressure and wind speed measurements have been carried out on a wind tunnel model at different angles of incident wind, and different duct configurations have been tested. It was confirmed that wind speeds up to 30% higher than in the approaching freestream may be induced in the duct, and good performance was obtained for angles of incident wind up to ±60°. The experimental work proceeded in parallel with computational fluid dynamics (CFD) modelling. The geometry of the system was difficult to represent to the required level of accuracy, and modelling was restricted to a few simple cases, for which the flow field in the building‐integrated duct was compared with experimental results. Generally good agreement was obtained, indicating that CFD techniques could play a major role in the design process. Predicted power of the proposed device suggests that it will compare favourably with conventional small wind turbines and photovoltaics in an urban environment. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
This article considers gain‐scheduling control of variable‐speed wind energy conversion systems (WECS) in the context of linear parameter‐varying (LPV) systems. The typical problems of the classic gain‐scheduling techniques, such as stability guarantees, undesirable transient responses in the controller commutations and arduous design procedures, can be avoided with this new formulation. A model of a variable‐speed WECS expressed in LPV form and an optimal LPV gain‐scheduling control strategy are presented. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
Power curve measurements provide a conventional and effective means of assessing the performance of a wind turbine, both commercially and technically. Increasingly high wind penetration in power systems and offshore accessibility issues make it even more important to monitor the condition and performance of wind turbines based on timely and accurate wind speed and power measurements. Power curve data from Supervisory Control and Data Acquisition (SCADA) system records, however, often contain significant measurement deviations, which are commonly produced as a consequence of wind turbine operational transitions rather than stemming from physical degradation of the plant. Using such raw data for wind turbine condition monitoring purposes is thus likely to lead to high false alarm rates, which would make the actual fault detection unreliable and would potentially add unnecessarily to the costs of maintenance. To this end, this paper proposes a probabilistic method for excluding outliers, developed around a copula‐based joint probability model. This approach has the capability of capturing the complex non‐linear multivariate relationship between parameters, based on their univariate marginal distributions; through the use of a copula, data points that deviate significantly from the consolidated power curve can then be removed depending on this derived joint probability distribution. After filtering the data in this manner, it is shown how the resulting power curves are better defined and less subject to uncertainty, whilst broadly retaining the dominant statistical characteristics. These improved power curves make subsequent condition monitoring more effective in the reliable detection of faults. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
A technoeconomic analysis and optimization of wind turbine size and layout are performed using WAsP software. A case study of a 100‐MW wind farm located in Egypt is considered. Wind atlas for Egypt was used as the input data of the WAsP software. Two turbine models of powers 52 and 80 MW are considered for this project. The wind turbine size and distributions are selected based on the technoeconomic optimization, namely minimum wake effect, maximum annual energy production (AEP) rate, optimum cash flow, and payback period. The future worth method is adopted in economic comparison between the two alternatives, and the cash flow diagram provided the payback period and future worth after the lifetime of the plant. The results showed that (1) the AEP dramatically decreases for a wind farm area less than 15 km2; (2) the turbine spacing, spacing‐to‐diameter ratio, and the setback distances decrease and the wind turbine density and wake losses increase with decreasing the wind turbines size; (3) the total net AEP using G52 is lower than that of using G80 by about 16%; (4) the technoeconomic analysis recommended using G80 as it has higher profit than those of G52 by about $20 million.  相似文献   

15.
Time‐accurate blade pressure distributions on a rotating H‐Darrieus wind turbine at representative tip speed ratios during start‐up are presented here, which allow blade dynamic stall and laminar separation bubbles to be observed clearly and which provide a rare experimental demonstration of the flow curvature effect inherent in H‐Darrieus turbine operation. The convection of a dynamic stall vortex along the blade surface at high reduced frequency has also been clearly identified. This study provides new information of the complex aerodynamics of the vertical axis wind turbines (VAWTs) and provides unique experimental data to validate the transient blade static surface pressure distribution predicted by CFD models. To the best of the authors' knowledge, this is the first time that the instantaneous pressure variation around the blade has been measured and recorded directly for an H‐Darrieus wind turbine.  相似文献   

16.
Large‐eddy simulations of the flow past an array of three aligned turbines have been performed. The study is focused on below rated (Region 2) wind speeds. The turbines are controlled through the generator torque gain, as usually done in Region 2. Two operating strategies are considered: (i) preset individual optimum torque gain based on a model for the power coefficient (baseline case) and (ii) real‐time optimization of torque gain for maximizing each individual turbine power capture during operation. The real‐time optimization is carried out through a model‐free approach, namely, extremum‐seeking control. It is shown that ESC is capable of increasing the power production of the array by 6.5% relative to the baseline case. The extremum‐seeking control reduces the torque gain of the downstream turbines, thus increasing the angular speed of the blades. This results in improved aerodynamics near the tip of the blade that is the portion contributing mostly to the torque and power. In addition, an increase in angular speed leads to a larger entrainment in the wake, which also contributes to provide additional available power downstream. It is also shown that the tip speed ratio may not be a reliable performance indicator when the turbines are in waked conditions. This may be a concern when using optimal parameter settings, determined from isolated turbine models, in applications with waked turbines. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
S. McTavish  D. Feszty  F. Nitzsche 《风能》2014,17(10):1515-1529
An experiment was conducted to evaluate the initial wake expansion in scaled wind turbine tests as a means to guide future wake interference studies. Five scaled wind turbine rotors with different diameters were designed for testing in a closed‐loop water channel to evaluate the effects of blockage on the initial wake expansion behind a wind turbine. The initial wake expansion was assessed by using quantitative dye visualization to identify the propagation of tip vortices downstream of the rotor. The thrust coefficient developed by the scaled models was recorded using a six‐component balance and was correlated to the downstream wake expansion. The rotors used in the experiment were operated at a tip speed ratio of 6, a Reynolds number based on the tip speed and tip chord of approximately 23,000 and resulted in blockage values that ranged from 6% to 25%. Dye visualization indicated that the initial wake expansion downstream of a rotor was narrowed and that tip vortex pairing behaviour was modified because of increasing blockage. Blockage effects were significant and resulted in a wake that was more than 50% narrower when blockage was 25% compared with the observed expansion with 10% blockage. A computational simulation was conducted with the Generalized Unsteady Vortex Particle (GENUVP) discrete vortex method code using the rotor in freestream conditions and was compared with the experiments. The magnitude of the wake expansion in the freestream computations was similar to the wake expansion in the experiment when blockage was less than 10%. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A complete fatigue assessment for operational conditions for offshore wind turbines involves simulating thousands of environmental states. For applications such as optimization, where this assessment needs to be repeated many times, that presents a significant computational problem. Here, we propose a novel way of reducing the number of simulated environmental states (load cases) while maintaining an acceptable accuracy. From one full fatigue analysis of a base design, the OC3 monopile (with the NREL 5MW turbine), the distribution of fatigue damage per load case can be used to estimate the lifetime fatigue damage of a range of modified designs. Using importance sampling and a specially adapted two‐stage filtering procedure, we obtain pseudo‐optimal sets of load cases from which the fatigue damage is estimated. This is applied to seven different designs that have been modified to emulate iterations of an optimization loop. For several of these designs, sampling less than 1% of all load cases can give damage estimates with median errors of less than 2%. Even for the most severe cases, using 3% of the environmental states yields a maximum error of 10%. While further refinement is possible, the method is considered viable for applications within design optimization and preliminary design.  相似文献   

19.
This paper presents a high‐order sliding mode control strategy that aims to optimize the power conversion efficiency of a wind energy conversion system within the partial load zone of operation. The main challenges of this control problem are related to the random variations of the wind speed, the nonlinear nature of the whole system, usual model uncertainties and external disturbances. For all these reasons, the robustness, simplicity and low computational burden of the proposed super‐twisting algorithm result very attractive in this context. Simulation results that show the achievement of the desired characteristics are provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
This paper investigates the physical capability of double‐fed induction generator (DFIG) wind turbines for inertial support of frequency response. Frequency stability is modeled using the DFIG electromechanical and generator controller dynamics, and a destabilizing effect is demonstrated in low‐inertia systems. To improve response, a synchronous reference frame DFIG controller is proposed that acts by following low‐frequency grid dynamics and adds a fast acting proportional plus integral (PI)‐controlled frequency‐responsive component to existing qd current commands. The proposed controller is derived in a straightforward manner using only the DFIG dynamic equations and is designed using pole/zero placement techniques. Laboratory experiments using a micro‐scale DFIG wind turbine with hub‐emulating flywheel prove better capability for transient frequency regulation even under extreme load change. The result is a DFIG controller that balances the appearance of transients in electrical and mechanical systems. Value is achieved in providing immediate continuous inertial response to support load change. The proposed frequency response can improve the use of existing physical inertia from wind turbines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号