首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
(Ethylene‐propylene‐diene monomer)/(recycled ethylene‐propylene‐diene monomer) (EPDM/r‐EPDM) blends filled with constant mica loading were compounded at various blends ratios (i.e., 90/10, 80/20, 70/30, 60/40, and 50/50). Results indicated that scorch time decreased with increasing r‐EPDM content, whereas curing time, minimum torque, and maximum torque show the opposite trend. The tensile strength, stress at 100% elongation, and elongation at break value increased with increasing r‐EPDM loading in the blend systems and the optimum properties occurred at 70/30 EPDM/r‐EPDM blends ratio. The thermal stability of EPDM/r‐EPDM blends increased with increasing r‐EPDM content in the blends but the swelling percentage showed the opposite trend with a greater addition of r‐EPDM content in the blends. J. VINYL ADDIT. TECHNOL., 21:1–6, 2015. © 2014 Society of Plastics Engineers  相似文献   

2.
Comparative studies of the thermogravimetric analysis and thermo‐oxidative aging of (natural rubber)/(waste ethylene‐propylene‐diene monomer terpolymer) (NR/W‐EPDM) and (natural rubber)/(ethylene‐propylene‐diene monomer terpolymer) (NR/EPDM) blends were carried out. The blends were prepared at five different blend ratios (90/10, 80/20, 70/30, 60/40, and 50/50) on a two‐roll mill. As the pure EPDM or W‐EPDM content in the blends increased, their thermal stability also increased. The thermo‐oxidative aging of these blends was done at 100°C for 48 h. Afterwards, the NR/EPDM blends exhibited better retention of properties than the NR/W‐EPDM blends. Crosslink density measurements of the blends after thermal aging indicated that higher crosslink density was obtained from a higher content of EPDM or W‐EPDM, a result which might be due to the high rate of radical termination leading to crosslinks in the bulk of the polymer. J. VINYL ADDIT. TECHNOL., 20:99–107, 2014. © 2014 Society of Plastics Engineers  相似文献   

3.
Loop tack, peel strength, shear strength, and morphology of (benzoyl peroxide)‐cured epoxidized natural rubber (ENR 25)/(acrylonitrile‐butadiene) rubber (NBR) blend adhesive were investigated by using petro resin as the tackifying resin. Benzoyl peroxide loading varied from 1 to 5 parts by weight per hundred parts of resin (phr), whereas the petro resin loading was fixed at 40 phr. A SHEEN hand coater was used to coat the adhesive on the polyethylene terephthalate substrate at 30 μm and 120 μm coating thicknesses. (ENR 25)/NBR adhesive was crosslinked at 80°C for 30 min prior to the determination of adhesion strength by a Lloyd adhesion tester operating at 10–60 cm/min. Results show that maximum loop tack and peel strength occur at 2 phr of benzoyl peroxide loading, whereby optimum cohesive and adhesive strength are obtained. However, shear strength increases with increasing benzoyl peroxide concentration, an observation that is associated with the steady increase in the cohesive strength. Scanning electron microscopy micrograph shows that little adhesive remained on the substrate at 0 phr compared with 2 phr of benzoyl peroxide loading, indicating that crosslinking increases the peel strength of the adhesive. In all cases, the adhesion properties increase with coating thickness and testing rate . J.VINYL ADDIT. TECHNOL., 24:93–98, 2018. © 2015 Society of Plastics Engineers  相似文献   

4.
The effects of maleic anhydride modified ethylene–propylene–diene rubber (EPDMMA) and maleic anhydride modified ethylene–vinyl acetate (EVAMA) on the compatibilization of nitrile rubber (NBR)/ethylene–propylene–diene rubber (70:30 w/w) blends vulcanized with a sulfur system were investigated. The presence of EPDMMA and EVAMA resulted in improvements of the tensile properties, whereas no substantial change was detected in the degree of crosslinking. The blend systems were also analyzed with scanning electron microscopy and dynamic mechanical thermal analysis. The presence of EVAMA resulted in a blend with a more homogeneous morphology. The compatibilizing effect of this functional copolymer was also detected with dynamic mechanical analysis. A shift of the glass‐transition temperature of the NBR phase toward lower values was observed. The presence of EPDMMA and EVAMA also increased the thermal stability, as indicated by an improvement in the retention of the mechanical properties after aging in an air‐circulating oven. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2408–2414, 2003  相似文献   

5.
Filled covulcanizates of elastomer blend comprising natural rubber (NR) and ethylene‐propylene‐diene rubber (EPDM) of commercial importance were successfully prepared by using a multifunctional rubber additive; namely, bis(diisopropyl)thiophosphoryl disulfide (DIPDIS). A Two‐stage vulcanization technique further improved the physicochemical properties of the blend vulcanizates by restricting, through the formation of polar rubber bound intermediates, the migration of curative and filler from lower to highly unsaturated rubber. Scanning electron microscopy studies indicate homogeneity and coherency in the morphology of the two‐stage vulcanizates. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 1001–1010, 2002; DOI 10.1002/app.10361  相似文献   

6.
The stress–strain (S/S) and the swelling equilibrium behavior in a series of ethylene propylene rubber (EPR) and ethylene propylene diene monomer (EPDM) networks were investigated and the results were employed to evaluate the effects of varying the cure conditions on the crosslinking efficiency in these networks. The S/S curve of completely swollen vulcanizates is in agreement with the predictions of rubber elasticity theory, while that of dry or partially swollen vulcanizates is fully described by the Mooney-Rivlin equation. ? values determined in benzene were found to vary linearly with vr (vr = equilibrium volume fraction of rubber in swollen sample). Crosslinking efficiency, moles of crosslinks produced per moles of crosslinking agent used, ranges from 3.7 in peroxide-cured EPDM (55% wt ethylene and 2.6% unsaturation) to 0.15 in similarly cured EPR (43% ethylene). Efficiency in the latter system improves to 0.6 by addition of a coagent (sulfur) to the cure formula. Crosslinking efficiency in EPDM (55% ethylene) was found to increase in the order: peroxide- > resin- > sulfur-cured. In the EPDM sulfur vulcanizates, changing the terpolymer in the cure formula resulted in significant changes in the crosslinking efficiency.  相似文献   

7.
Epoxidized natural rubber/Ethylene vinyl acetate copolymer (ENR‐50/EVA) blends with different ratios were prepared by using a Haake internal mixer. The effect of the blend ratio on the processing, tensile properties (such as tensile strength, elongation at break, Young's modulus and stress–strain behavior), morphology, dynamic mechanical properties, and thermal properties has been investigated. The tensile properties increase with the increase of EVA content, whereas the stabilization torque increases with the increase of ENR‐50 content in the blend. In 40:60 and 50:50 blend of ENR‐50/EVA, both the phases exist as continuous phases, producing a co‐continuous morphology. At these blend ratio, the drastic change in properties were noted, indicating that the phase inversion occurs. The results on dynamic mechanical properties revealed that the blends are compatible. Blending of ENR‐50 and EVA lead to the improvement in thermal stability and 50:50 blend ratios is the most stable blend. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1504–1515, 2006  相似文献   

8.
Ethylene–propylene–diene rubber (EPDM)/organomontmorillonite (OMMT) nanocomposites were prepared with a maleic anhydride grafted EPDM oligomer as a compatibilizer via melt intercalation. X‐ray diffraction and transmission electron microscopy indicated that the silicate layers of OMMT were exfoliated and dispersed uniformly as a few monolayers in nanocomposites. The change in the crystallization behavior of the nanocomposites was examined. The nanocomposites exhibited great improvements in the tensile strength and tensile modulus. The incorporation of OMMT gave rise to a considerable reduction of tan δ and an increase in the storage modulus. Moreover, the solvent resistance of the nanocomposites increased remarkably. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 440–445, 2004  相似文献   

9.
Study of melts rheological properties of unvulcanized and dynamically vulcanized polypropylene (PP)/ethylene‐propylene‐diene rubber (EPDM) blends, at blending ratios 10–40 wt %, EPDM, are reported. Blends were prepared by melt mixing in an internal mixer at 190°C and rheological parameters have been evaluated at 220°C by single screw capillary rheometer. Vulcanization was performed with dimethylol phenolic resin. The effects of (i) blend composition; (ii) shear rate or shear stress on melt viscosity; (iii) shear sensitivity and flow characteristics at processing shear; (iv) melt elasticity of the extrudate; and (v) dynamic cross‐linking effect on the processing characteristics of the blends were studied. The melt viscosity increases with increasing EPDM concentration and decreased with increasing intensity of the shear mixing for all compositions. In comparison to the unvulcanized blends, dynamically vulcanized blends display highly pseudoplastic behavior provides unique processing characteristics that enable to perform well in both injection molding and extusion. The high viscosity at low shear rate provides the integrity of the extrudate during extrusion, and the low viscosity at high shear rate enables low injection pressure and less injection time. The low die‐swell characteristics of vulcanizate blends also give high precision for dimensional control during extrusion. The property differences for vulcanizate blends have also been explained in the light of differences in the morphology developed. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1488–1505, 2000  相似文献   

10.
The migration of sulfur from natural rubber (NR) compound to the ground waste ethylene‐propylene‐diene monomer (EPDM) rubber phase may have caused the cure incompatibility between these two rubbers. Optimization of accelerators had been adopted to overcome the cure incompatibility in NR/(R‐EPDM) blends as well as to get increased curative distribution. In this study, blends of NR and R‐EPDM were prepared. The effect of accelerator type on curing characteristics, tensile properties, and dynamic mechanical properties of 70/30/NR/(R‐EPDM) blend was investigated. Four types of commercial accelerators were selected [ie, N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , N‐cyclohexyl‐benzothiazyl‐sulfenamide (CBS), tetramethylthiuram disulfide, and 2‐mercaptobenzothiazol]. It was found that the tensile strength of the blends cured in the presence of CBS was relatively higher than the other three accelerators. Scanning electron micrographs of CBS‐cured NR/(R‐EPDM) blends exhibited more roughness and cracking path, indicating that higher energy was required toward the fractured surface. The high crosslinking density observed from the swelling method could be verified from the storage modulus (E′) and damping factor (tan δ) where (tetramethylthiuram disulfide)‐cured NR/(R‐EPDM) blends provided a predominant degree of crosslinking followed by N‐tert‐butyl‐2‐benzothiazyl‐sulphonamide , CBS, and 2‐mercaptobenzothiazol, respectively. J. VINYL ADDIT. TECHNOL., 21:79–88, 2015. © 2014 Society of Plastics Engineers  相似文献   

11.
The deformation and fracture behavior of several dynamic vulcanizate blends of isotactic polypropylene with ethylene‐propylene‐diene rubber (EPDM) was examined and compared with those of uncrosslinked blends of PP/EPDM. These blends were prepared by melt mixing in an internal mixer at 190°C in a composition range of 10–40 wt % EPDM rubber. The variation in yield stress, the strength of fibrils of the craze, and the number density of the EPDM rubber domains (morphology fixation) that are dominant factors for enhancing interfacial adhesion and toughness in dynamic vulcanizate blends were evaluated. The ductility and toughness of these materials were explained in light of the composition between crack formation and the degree of plastic deformation through crazing and shear yielding. The physicomechanical properties including the hardness, yield stress, Young's modulus, percentage elongation, impact strength, flexural strength, and flexural modulus of dynamic vulcanized blends were found to be consistent and displayed higher values compared with uncrosslinked blends. The nucleation effect of the crosslinked particles and the decrease of crystallinity of the EPDM rubber were also considered to contribute to the improvement in the impact strength. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2089–2103, 2000  相似文献   

12.
Considering the properties of silicon rubber, ethylene–propylene–diene monomer (EPDM), and cis‐polybutadiene rubber (BR), a blend made by a new method was proposed in this article; this blend had thermal resistance and good mechanical properties. The morphology of the blend was studied by SEM, and it was found that the adhesion between the phases of BR, EPDM, and polysiloxanes (silicon rubber) could be enhanced, and the compatibility and covulcanization were good. The influence of the mass ratio of peroxide and silica on the mechanical properties and thermal resistance of the blend was studied. The results showed that the mechanical properties and thermal resistance of the blend were improved when silicon rubber/BR/EPDM was 20/30/50, dicumyl peroxide/sulfur was 2.5/2.5, and the amount of silica was 80 phr. The integral properties of rubber blend had more advantages than did the three rubbers. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 4462–4467, 2006  相似文献   

13.
The effects of ultrasonic irradiation on extrusion processing and mechanical properties of polypropylene (PP)/ethylene–propylene–diene terpolymer (EPDM) blends are examined. Results show that appropriate irradiation intensity can prominently decrease die pressure and apparent viscosity of the melt, increase output, as well as increase toughness of PP/EPDM blends without harming rigidity. In case the blends are extruded with ultrasonic irradiation twice, the impact strength of the blend rises sharply at 50–100 W ultrasonic intensity, and amounts to more than 900 J/m, 1.5 times as high as that of blend without ultrasonic irradiation. Scanning electron microscopy observation shows that with ultrasonic irradiation, morphology of uniform dispersed EPDM phase and good adhesion between EPDM and PP matrix was formed in PP/EPDM blend. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 3519–3525, 2003  相似文献   

14.
In this work, we attempted two different ways of processing to improve interfacial adhesion of polypropylene (PP) and ethylene–propylene–diene terpolymer (EPDM) by introducing maleic anhydride (MAH); In one way, the in situ grafting and dynamic vulcanization (ISGV) were performed simultaneously from PP and EPDM with MAH in the presence of dicumyl peroxide (DCP) in an intensive mixer. In another way, PP was first grafted with MAH and then the PP‐g‐MAH was blended with EPDM in the intensive mixer in the presence of DCP by the dynamic vulcanization (DV). It was found that the glass transition temperatures (Tgs) of both PP and EPDM phases were shifted to higher temperature as the EPDM content increased for the blends prepared by both IGSV and DV methods, mainly due to the crosslinking of EPDM. The higher Tgs and larger storage moduli were observed for the blends prepared by the ISGV method than those prepared by the DV method, while the morphology showed that the size reduction of dispersed particles in latter blends was larger than that of the former blends. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2777–2784, 2000  相似文献   

15.
Vulcanizates of blends of ethylene–propylene–diene rubber and polyamide copolymers were prepared by reactive compatibilization. A reactive route was employed for compatibilizing these blends with the addition of chlorinated polyethylene (CPE). The influence of the compatibilizers, crosslinking agents, blend compositions, and addition modes of the compatibilizers on the mechanical properties of the blends was investigated. The morphologies of the blends were determined with scanning electron microscopy. The addition of CPE was found to reduce the particle size of the dispersed phase remarkably. The stability of the blends with compatibilizers was measured by high‐temperature thermal aging. The mechanical properties were examined by stress–strain measurements and dynamic mechanical thermal measurements; the addition of polyamide copolymers caused significant improvements in the tensile properties of these blends.© 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 1727–1736, 2003  相似文献   

16.
Tensile yield behavior of the blends of polypropylene (PP) with ethylene‐propylene‐diene rubber (EPDM) is studied in blend composition range 0–40 wt % EPDM rubber. These blends were prepared in a laboratory internal mixer by simultaneous blending and dynamic vulcanization. Vulcanization was performed with dimethylol phenolic resin. For comparison, unvulcanized PP/EPDM blends were also prepared. In comparison to the unvulcanized blends, dynamically vulcanized blends showed higher yield stress and modulus. The increase of interfacial adhesion caused by production of three‐dimensional network is considered to be the most important factor in the improvement. It permits the interaction of the stress concentrate zone developed at the rubber particles and causes shear yielding of the PP matrix. Systematic changes with varying blend composition were found in stress‐strain behavior in the yield region, viz., in yield stress, yield strain, width of yield peak, and work of yield. Analysis of yield stress data on the basis of the various expressions of first power and two‐thirds power laws of blend compositions dependence and the porosity model led to consistent results from all expression about the variation of stress concentration effect in both unvulcanized and vulcanized blend systems. Shapes and sizes of dispersed rubber phase (EPDM) domains at various blend compositions were studied by scanning electron microscopy. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 78: 2104–2121, 2000  相似文献   

17.
《Polymer Composites》2017,38(5):870-876
Thermally conductive fillers are usually employed in the preparation of rubber composites to enhance thermal conductivity. In this work, ethylene‐propylene‐diene monomer rubber (EPDM)/expanded graphite (EG) and EPDM/graphite composites with up to 100 phr filler loading were prepared. Compared to EPDM/graphite compounds with the same filler loading, stronger filler network was demonstrated for EPDM/EG compounds. Thermal conductivity and mechanical properties of EPDM/graphite and EPDM/EG composites were compared and systematically investigated as a function of the filler loading. The thermal conductivity of both EPDM/graphite and EPDM/EG composites increased with increasing volume fraction of fillers, and could be well fitted by Geometric Mean Model. The thermal conductivity as high as 0.910 W · m−1 · K−1 was achieved for the EPDM/EG composite with 25.8 vol% EG, which was ∼4.5 times that of unfilled EPDM. Compared to EPDM/graphite composites, EPDM/EG composites exhibited much more significant improvement in thermal conductivity and mechanical properties, which could be well correlated with the better filler‐matrix interfacial compatibility and denser structure in EPDM/EG composites, as revealed in the SEM images of tensile fracture surfaces. POLYM. COMPOS., 38:870–876, 2017. © 2015 Society of Plastics Engineers  相似文献   

18.
This work highlights an attempt to characterize the degree and nature of long‐chain branching (LCB) in an unknown sample of ethylene‐propylene‐diene rubber (EPDM). Two EPDM rubbers selected for this study were comparable in comonomer compositions but significantly different with respect to molar mass and the presence of LCB. Both rubbers contained 5‐ethylidene‐2‐norbornene (ENB) as diene. Solution cast films of pure EPDM samples were used for different characterization techniques. 1H‐NMR, and 13C‐NMR were used for assessing the comonomer ratios and LCB. Size exclusion chromatography (SEC) equipped with triple detector system was used to determine the molar mass (both absolute and relative) and polydispersity index (PDI). Presence of branching was also detected using sec‐viscometry. Rheological analysis has also been used for characterizing LCB. Finally, on the basis of the experimental findings and the available theories, an attempt was made to identify the chemical nature and degree of LCB. This study reveals the possibility of detailed characterization of molecular architecture of EPDM containing LCB by comparing with an essentially linear EPDM in light of an existing theory. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

19.
Maleated ethylene‐propylene‐diene rubber (EPDM‐g‐MA) toughened polyamide 6 (PA6)/organoclay (OMMT) nanocomposites were prepared by melt blending. The role of OMMT in the morphology of the ternary composites and the relationship between the morphology and mechanical properties were investigated by varying the blending sequence. The PA6/EPDM‐g‐MA/OMMT (80/20/4) composites prepared by four different blending sequences presented distinct morphology and mechanical properties. The addition of OMMT could obviously decrease viscosity of the matrix and weaken the interfacial interactions between PA6 and EPDM‐g‐MA when blending EPDM‐g‐MA with a premixed PA6/OMMT nacocomposite, resulting in the increase of rubber particle size. The final mechanical properties are not only determined by the location of OMMT, but also by the interfacial adhesion between PA6 and EPDM‐g‐MA. Having maximum percentage of OMMT platelets in the PA6 matrix and keeping good interfacial adhesion between PA6 and EPDM‐g‐MA are beneficial to impact strength. POLYM. ENG. SCI., 2009. © 2008 Society of Plastics Engineers  相似文献   

20.
Blends of recycled poly(ethylene terephthalate) (R‐PET) and (styrene‐ethylene‐ethylene‐propylene‐styrene) block copolymer (SEEPS) compatibilized with (maleic anhydride)‐grafted‐styrene‐ethylene‐butylene‐styrene (SEBS‐g‐MAH) were prepared by melt blending. The compatibilizing effects of SEBS‐g‐MAH were investigated systematically by study of the morphology, linear viscoelastic behavior, and thermal and mechanical properties of the blends. The results show that there is good agreement between the results obtained by rheological measurement and morphological analysis. The rheological test shows that the melt elasticity and melt strength of the blends increase with the addition of SEBS‐g‐MAH. The Cole‐Cole plots and van Gurp‐Palmen plots confirm the compatibilizing effect of SEBS‐g‐MAH. However, the Palierne model fails to predict the linear viscoelastic properties of the blends. The morphology observation shows that all blends exhibit a droplet‐matrix morphology. In addition, the SEEPS particle size in the (R‐PET)/SEEPS blends is significantly decreased and dispersed uniformly by the addition of SEBS‐g‐MAH. Differential scanning calorimeter analysis shows that the crystallization behavior of R‐PET is restricted by the incorporation of SEEPS, whereas the addition of SEBS‐g‐MAH improves the crystallization behavior of R‐PET compared with that of uncompatibilized (R‐PET)/SEEPS blends. The Charpy impact strength of the blends shows the highest value at SEBS‐g‐MAH content of 10%, which is about 210% higher than that of pure R‐PET. J. VINYL ADDIT. TECHNOL., 22:342–349, 2016. © 2014 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号