首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Numerical simulations of rain droplet impacts on real rough surfaces of leading edges of wind turbine blades are presented. The effect of rough blade surface conditions during liquid impacts on the stress distribution in the protective coating is studied. Realistic rough surfaces of wind turbine blades, obtained from 3D reconstruction of real blades with photogrammetry, as well as artificially generated rough surfaces were introduced into finite element models of the droplet/blade coating interaction. Stress distributions in the protective coating with rough and flat surfaces were studied and compared. The results of the simulations suggest that roughness on the surface of the blade leads to increased stresses in the protective coating.  相似文献   

2.
Renewable energy is one of the main pillars of sustainable development, especially in developing economies. Increasing energy demand and the limitation of fossil fuel reserves make the use of renewable energy essential for sustainable development. Wind energy is considered to be one of the most important resources of renewable energy. In North African countries, such as Egypt, wind energy has an enormous potential; however, it faces quite a number of technical challenges related to the performance of wind turbines in the Saharan environment. Seasonal sand storms affect the performance of wind turbines in many ways, one of which is increasing the wind turbine aerodynamic resistance through the increase of blade surface roughness. The power loss because of blade surface deterioration is significant in wind turbines. The surface roughness of wind turbine blades deteriorates because of several environmental conditions such as ice or sand. This paper is the first review on the topic of surface roughness effects on the performance of horizontal‐axis wind turbines. The review covers the numerical simulation and experimental studies as well as discussing the present research trends to develop a roadmap for better understanding and improvement of wind turbine performance in deleterious environments. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Developments in the wind industry reveal intricate engineering challenges, one of them being the erosion on the leading edge of the wind turbine blades. In this review work, the main issues for the wind industry in the experimentation with respect to erosion are examined. After a historical and general overview of erosion, this review focuses on the rain erosion on the leading edge of the wind turbine blades giving prominence to (1) the rain simulations, (2) experimental erosion facilities, and (3) variables to characterise erosion. These three factors have to be improved to establish a research field enabling the prediction of erosion behaviour and providing useful information about how the rainfall affects the leading edge of the wind turbine blades. Moreover, these improvements in the experimentation of the erosion would be a first step to understand and predict the erosion damage of the wind turbine blades. Finally, this review work also will help to cope with experimental investigations and results in the rain erosion on the leading edge with a deeper critical thinking for future researchers.  相似文献   

4.
M. A. Eder  R. D. Bitsche 《风能》2015,18(6):1007-1022
Modern wind turbine rotor blades are usually made from fibre‐reinforced composite subcomponents. In the final assembly stage, these subcomponents are bonded together by several adhesive joints. One important adhesive joint is situated at the trailing edge, which refers to the downstream edge where the air‐flow rejoins and leaves the blade. Maintenance inspections of wind turbine rotor blades show that among other forms of damage, local debonding of the shells along the trailing edge is a frequent failure type. The cause of trailing edge failure in wind turbine blades is complex, and detailed information is scarce. This paper is concerned with the fracture analysis of adhesive joints in general, with a particular focus on trailing edges. For that, the energy release rates in prescribed cracks present in the bond line of a generic trailing edge joint are investigated. In connection with this examination, the paper elucidates the influence of geometrical non‐linearity in form of local buckling on both the increase of the energy release rate and the change of mode mixity. First, experimental results on adhesively bonded small‐scale subcomponents are presented. Thereafter, a practical approach is presented, which links the experimental results conducted on a small scale to the numerical failure prediction of large‐scale models. The proposed method is based on the virtual crack closure technique and defines the mode mixity at bimaterial interfaces unambiguously. The method is consequently applied to a wind turbine blade submodel in order to predict crack growth in the trailing edge. Thereby, the influence of different crack lengths on crack initiation and propagation is considered. The paper concludes with general thoughts on adhesively bonded trailing edge joints regarding the prevention of local debonding. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Scott Larwood  C.P. van Dam 《风能》2013,16(6):879-907
Because of their aeroelastic behavior, swept wind turbine blades offer the potential to increase energy capture and lower fatigue loads. This article describes work to develop a dynamic analysis code for swept wind turbine blades. This work was an outgrowth of a U.S. Department of Energy contract on swept blades, where the authors used the Adams? dynamic software (MSC Software Corporation, Santa Ana, CA, USA). The new code is based on the National Renewable Energy Laboratory's FAST code and allows for lower cost analysis and faster computation times for swept blades. The additions to the FAST code include the geometry and mode shapes required for the bending and twisting motion of the swept blade. In addition, a finite element program to determine mode shapes for the swept blade was developed. Comparisons of results obtained with the new code and analytical solutions for a curved cantilever beam show good agreement in local torsional deflections. Comparisons with field data obtained for a 750 kW wind turbine with swept blades were complicated by uncertainties in the test wind speed and turbine controller settings.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero‐elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero‐elastic behaviour of a real wind turbine, the code employs 11 basic degrees of freedom corresponding to 11 elastic structural equations. In the BEM theory, a refined tip loss correction model is used. The objective of the optimization model is to minimize the cost of energy which is calculated from the annual energy production and the cost of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero‐elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used in the European Commision‐sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero‐elastic results are examined against the FLEX code for flow past the Tjæreborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 kW experimental rotor, the Tjæreborg 2 MW rotor and the NREL 5 MW virtual rotor) are applied. The results show that the optimization model can reduce the cost of energy of the original rotors, especially for the investigated 2 MW and 5 MW rotors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
For wind turbine blades with the increased slenderness ratio, flutter instability may occur at lower wind and rotational speeds. For long blades, at the flutter condition, relative velocities at blade sections away from the hub center are usually in the subsonic compressible range. In this study, for the first time for composite wind turbine blades, a frequency domain classical flutter analysis methodology has been presented including the compressibility effect only for the outboard blade sections, which are in the compressible flow regime exceeding Mach 0.3. Flutter analyses have been performed for the baseline blade designed for the 5‐MW wind turbine of NREL. Beam‐blade model has been generated by making analogy with the structural model of the prewisted rotating thin‐walled beam (TWB) and variational asymptotic beam section (VABS) method has been utilized for the calculation of the sectional properties of the blade. To investigate the compressibility effect on the flutter characteristics of the blade, frequency and time domain aeroelastic analyses have been conducted by utilizing unsteady aerodynamics via incompressible and compressible indicial functions. This study shows that with use of compressible indicial functions, the effect of compressibility can be taken into account effectively in the frequency domain aeroelastic stability analysis of long blades whose outboard sections are inevitably in the compressible flow regime at the onset of flutter.  相似文献   

8.
9.
叶片是风力机的重要构件,对其合理设计十分重要。总结了叶片的设计流程,并选择合理的设计参数,设计出兆瓦级风力机的叶片;在三维绘图软件中建模;应用有限元法,选定叶片的材料参数,在有限元软件中对叶片进行模态分析,确定了叶片的各阶模态振型及各阶频率,并对比分析叶片各阶模态振型结果。结果表明,叶片的固有频率范围与外界的激励的频率范围不重合,因此避免了共振破坏的发生。  相似文献   

10.
风机叶片的发展概况和趋势   总被引:10,自引:1,他引:9  
由于煤炭、石油等化石能源资源有限且存在严重环境污染的危险,人们自然将目光集中在那些污染少、可持续供应的新能源上,因此发展风电成为了解决全球环境与能源问题的重要手段。在1887~1888年的冬天,美国的Charles F.Brush建造了世界第一座全自动风力发电机并成功发电,  相似文献   

11.
通过计算桨叶的弯曲频率和扭转频率,采用ANSYS大型有限元软件对大型恒频变速风力发电机组桨叶进行建模,同时分析该桨叶动态特性的优缺点,并分析影响桨叶建模和动态特性的主要因素,对计算值和测量值的误差进行比较,同时对桨叶的振型进行分析,为今后更深入地研究大型恒频变速风电机组桨叶特性奠定了良好的理论基础。  相似文献   

12.
This paper presents a novel framework for the structural design and analysis of wind turbine blades and establishes its accuracy. The framework is based on a beam model composed of two parts—a 2D finite element‐based cross‐section analysis tool and a 3D beam finite element model. The cross‐section analysis tool is able to capture the effects stemming from material anisotropy and inhomogeneity for sections of arbitrary geometry. The proposed framework is very efficient and therefore ideally suited for integration within wind turbine aeroelastic design and analysis tools. A number of benchmark examples are presented comparing the results from the proposed beam model to 3D shell and solid finite element models. The examples considered include a square prismatic beam, an entire wind turbine rotor blade and a detailed wind turbine blade cross section. Phenomena at both the blade length scale—deformation and eigenfrequencies—and cross section scale—3D material strain and stress fields—are analyzed. Furthermore, the effect of the different assumptions regarding the boundary conditions is discussed in detail. The benchmark examples show excellent agreement suggesting that the proposed framework is a highly efficient alternative to 3D finite element models for structural analysis of wind turbine blades. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
利用流体分析软件Fluent对NACA4415与SD7043两种常见翼型进行流场模拟,从外形特征分析两者的气动性能差异,进一步利用翼型分析软件profili的翼型设计功能,结合两种翼型的长处,设计出新的翼型,并对新翼型与原有翼型在升阻特性上的差异进行分析,对比发现新翼型气动性能更优。最后利用新翼型基于Solidworks设计出一款小型风力发电机叶片。  相似文献   

14.
叶片为风力发电装置中最核心、最关键的部件之一,其材料的选择对于叶片设计至关重要.大型风力机叶片普遍采用复合材料.将叶片视为一个变截面悬臂梁,基于经典层合板理论和梁帽式铺层方法,利用美国可再生能源国家实验室(NREL)发布的叶片结构分析软件PreComp和BModes计算叶片截面刚度、固有频率以及极限载荷作用下的变形.将计算值和ANSYS软件的分析结果进行比较,结果表明梁帽式铺层方法合理可行,且不影响叶片性能,在实际工程应用中有较大的使用价值.  相似文献   

15.
As wind turbines continue to grow in size, it becomes increasingly important to ensure that they are as structurally efficient as possible to ensure that wind energy can be a cost‐effective source of power generation. A way to achieve this is through weight reductions in the blades of the wind turbine. In this study, topology optimization is used to find alternative structural configurations for a 45 m blade from a 3 MW wind turbine. The result of the topology optimization is a layout that varies along the blade length, transitioning from a structure with trailing edge reinforcement to one with offset spar caps. Sizing optimization was then performed on a section with the trailing edge reinforcement and was shown to offer potential weight savings of 13.8% when compared with a more conventional design. These findings indicate that the conventional structural layout of a wind turbine blade is sub‐optimal under the static load conditions that were applied, suggesting an opportunity to reduce blade weight and cost. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
考虑叶片和塔架的动力耦合作用,建立了5 MW风机整体结构的有限元模型,计算其在随机风速下的动响应。为分析叶片和塔架的动力耦合对风机结构动响应的影响,计算比较了刚性支撑的叶片、简化的风机和整体风机3种模型在风载下的动响应位移和应力。计算结果表明:由于叶片和塔架的耦合作用,叶片的位移响应最大增加约20%,但是塔架的位移响应最大降低了约60%。文章还分析了叶片旋转过程中方位角对塔架位移响应的影响。在叶片的一个旋转周期内,塔架的响应幅值会有较大的波动,最大响应幅值约为最小响应幅值的3倍。  相似文献   

17.
由于风力机叶片所受风力来流的随机性和风力机结构的复杂性,大型风力机在随机风载荷下的动力学行为分析一直是风电行业急需解决的难题之一。利用MATLAB/Simulink对随机风速进行了模拟,通过柔性多体动力学方法建立了符合实际的风力机叶片/机舱/塔架耦合动力学方程。在随机风载荷下对目前国内1.5 MW主流风力机的叶片、塔架的动力学行为进行了实例分析,得到了10 min时序随机风载下的叶片挥舞位移、速度历程和塔架的位移、速度历程。分析结果表明,在随机风载下,风力机启动时叶片、塔架振动较为剧烈,随时间的增加叶片、塔架振动幅度逐渐减小,振动速度也呈减小趋势。该研究结果为我国风力机设计理论的完善和工程实践奠定了一定的基础。  相似文献   

18.
变桨距风力机叶片的气动优化设计   总被引:1,自引:0,他引:1  
首先利用Wilson方法进行叶片的外形初步设计,然后以设计攻角作为变量,以额定风速下功率系数最大为优化目标,建立了1 MW变桨距风力机叶片气动外形优化模型,采用遗传算法进行了优化再设计。通过对3叶片1 MW风力机进行的气动性能评价结果表明,优化后的风力机具有更好的气动性能,说明采用该优化方法进行变桨距风力机设计具有明显的优越性。  相似文献   

19.
B. S. Joyce  J. Farmer  D. J. Inman 《风能》2014,17(6):869-876
The long composite blades on large wind turbines experience tremendous stresses while in operation. There is an interest in implementing structural health monitoring (SHM) systems inside wind turbine blades to alert maintenance teams of damage before serious component failure occurs. This paper proposes using an energy harvesting device inside the blade of a horizontal axis wind turbine to power a SHM system. The harvester is a linear induction energy harvester placed radially along the length of the blade. The rotation of the blade causes a magnet to slide along a tube as the blade axis changes relative to the direction of gravity. The magnet induces a voltage in a coil around the tube, and this voltage powers the SHM system. This paper begins by discussing motivation for this project. Next, a harvester model is developed, which encompasses the mechanics of the magnet, the interaction between the magnet and the coil, and the current in the electrical circuit. A free fall test verifies the electromechanical coupling model, and a rotating test examines the power output of a prototype harvester. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
The protection of wind turbines from lightning damage is increasingly important as they increase in size and are placed in locations where access to carry out repairs may be difficult. As blades are the most common attachment point of lightning, they must be adequately protected. In addition, the passage of lightning current through wind turbine bearings introduces a risk of lightning damage to these vital components. Investigations relating to the improvement of blade lightning protection systems have been carried out, including experiments designed to address the difficult problems involved in the protection of hydraulic cylinders used for tip brake control. Work has also focused on the ability of lightning current to cause damage to wind turbine bearings. The work has been a mixture of computer simulations and experimental testing using high‐voltage and high‐current facilities. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号