首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Engineers and researchers working on the development of airborne wind energy systems (AWES) still rely on oversimplified wind speed approximations and coarsely sampled reanalysis data because of a lack of high‐resolution wind data at altitudes above 200 m. Ten‐minute average wind speed LiDAR measurements up to an altitude of 1100 m and data from nearby weather stations were investigated with regard to wind energy generation and impact on LiDAR measurements. Data were gathered by a long‐range pulsed Doppler LiDAR device installed on flat terrain. Because of the low overall carrier‐to‐noise ratio, a custom‐filtering technique was applied. Our analyses show that diurnal variation and atmospheric stability significantly affect wind conditions aloft which cause a wide range of wind speeds and a multimodal probability distribution that cannot be represented by a simple Weibull distribution fit. A better representation of the actual wind conditions can be achieved by fitting Weibull distributions separately to stable and unstable conditions. Splitting and clustering the data by simulated surface heat flux reveals substate stratification responsible for the multimodality. We classify different wind conditions based on these substates, which result in different wind energy potential. We assess optimal traction power and optimal operating altitudes statistically as well as for specific days based on a simplified AWES model. Using measured wind speed standard deviation, we estimate average turbulence intensity and show its variation with altitude and time. Selected short‐term data sets illustrate temporal changes in wind conditions and atmospheric stratification with a high temporal and vertical resolution.  相似文献   

2.
In this study, the two Weibull parameters of the wind speed distribution function, the shape parameter k (dimensionless) and the scale parameter c (ms?1), were computed from the wind speed data for ?zmir. Wind data, consisting of hourly wind speed records over a 5‐year period, 1995–1999, were measured in the Solar/Wind‐Meteorological Station of the Solar Energy Institute at Ege University. Based on the experimental data, it was found that the numerical values of both Weibull parameters (k and c) for ?zmir vary over a wide range. The yearly values of k range from 1.378 to 1.634 with a mean value of 1.552, while those of c are in the range of 2.956–3.444 with a mean value of 3.222. The average seasonal Weibull distributions for ?zmir are also given. The wind speed distributions are represented by Weibull distribution and also by Rayleigh distribution, with a special case of the Weibull distribution for k=2. As a result, the Weibull distribution is found to be suitable to represent the actual probability of wind speed data for ?zmir (at annual average wind speeds up to 3 ms?1). Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

3.
To identify the influence of wind shear and turbulence on wind turbine performance, flat terrain wind profiles are analysed up to a height of 160 m. The profiles' shapes are found to extend from no shear to high wind shear, and on many occasions, local maxima within the profiles are also observed. Assuming a certain turbine hub height, the profiles with hub‐height wind speeds between 6 m s?1 and 8 m s?1 are normalized at 7 m s?1 and grouped to a number of mean shear profiles. The energy in the profiles varies considerably for the same hub‐height wind speed. These profiles are then used as input to a Blade Element Momentum model that simulates the Siemens 3.6 MW wind turbine. The analysis is carried out as time series simulations where the electrical power is the primary characterization parameter. The results of the simulations indicate that wind speed measurements at different heights over the swept rotor area would allow the determination of the electrical power as a function of an ‘equivalent wind speed’ where wind shear and turbulence intensity are taken into account. Electrical power is found to correlate significantly better to the equivalent wind speed than to the single point hub‐height wind speed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
The results of an experimental assessment of a small prototype battery charging wind turbine designed for low‐ and medium‐wind regimes are presented. The turbine is based on a newly designed axial flow permanent magnet synchronous generator and a three‐bladed rotor with variable twist and taper blades. Overspeed control is performed by a furling mechanism. The turbine has the unique feature of being capable of operating at either 12, 24 or 48 V system voltage, requiring no load control in any case. In the 48 V configuration, the system is capable of providing 2 kWh day?1 for an average wind speed as low as 3.5 m s?1 and an air density of 85% of the standard pressure and temperature value. The experimental assessment has been conducted under field conditions with the turbine mounted on a 20 m guy‐wired tubular tower. The experimental power curves are shown to be in good agreement with a detailed aerodynamical and electromechanical model of the turbine for non‐furling conditions and for wind speeds above the theoretical cut‐in speed. In the case of the rapidly spinning load configurations, a finite power production at wind speeds below the theoretical cut‐in speed can be observed, which can be explained in terms of inertia effects. During the measurement campaigns with high loads, we were able to observe bifurcations of the power curve, which can be explained in terms of instabilities arising in situations of transition from attached to separated flow. A full experimental Cp(λ)‐curve has been constructed by operating the turbine under different load conditions and the findings are in good agreement with a variable Reynolds‐number blade‐element momentum model. The three proposed system configurations have been found to operate with a high aerodynamic efficiency with typical values of the power coefficient in the 0.40–0.45 range. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The peculiarities of meteorological wind potential in alpine settings compared to flatland and offshore sites are studied. Four data sources are used: Global reanalysis ERA40 from ECMWF, long‐term stations in the Tyrolean Alps, spatially dense measurements near the best site and Doppler sodar wind profiles. Due to the decrease of density with height, alpine sites suffer from a nearly linear decrease of harvestable power with altitude, which is more than offset by the increase of wind speed at altitudes above 1.5 km MSL. ERA40 data show higher potential on the northern than on the southern side of the Alps. The best locations are not isolated peaks but ridges within wide orographic channels. The best potential sites in the Tyrolean part of the Alps have median wind speeds of up to 7.1 m s?1 and extractable potentials between 2900 and 1600 kWh per year and per square meter of rotor area. The profile of horizontal wind speed at ridge sites is often not logarithmic but approximately constant within the height of a wind turbine due to a (nearly) complete absence of upwind fetch. Also, the turbulence intensity is independent of height. Icing can cause considerable downtimes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
High wind speeds can pose a great risk to structures and operations conducted in offshore environments. When forecasting wind speeds, most models focus on the average wind speeds over a given period, but this value alone represents only a small part of the true wind conditions. We present statistical models to predict the full distribution of the maximum‐value wind speeds in a 3 h interval. We take a detailed look at the performance of linear models, generalized additive models and multivariate adaptive regression splines models using meteorological covariates such as gust speed, wind speed, convective available potential energy, Charnock, mean sea‐level pressure and temperature, as given by the European Center for Medium‐Range Weather Forecasts forecasts. The models are trained to predict the mean value of maximum wind speed, and the residuals from training the models are used to develop the full probabilistic distribution of maximum wind speed. Knowledge of the maximum wind speed for an offshore location within a given period can inform decision‐making regarding turbine operations, planned maintenance operations and power grid scheduling in order to improve safety and reliability, and probabilistic forecasts result in greater value to the end‐user. The models outperform traditional baseline forecast methods and achieve low predictive errors on the order of 1–2 m s?1. We show the results of their predictive accuracy for different lead times and different training methodologies. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Wind turbines must be designed in such a way that they can survive in extreme environmental conditions. Therefore, it is important to accurately estimate the extreme design loads. This paper deals with a recently proposed method for obtaining short‐term extreme values for the dynamic responses of offshore fixed wind turbines. The 5 MW NREL wind turbine is mounted on a jacket structure (92 m high) at a water depth of 70 m at a northern offshore site in the North Sea. The hub height is 67 m above tower base or top of the jacket, i.e. 89 m above mean water level. The turbine response is numerically obtained by using the aerodynamic software HAWC2 and the hydrodynamic software USFOS . Two critical responses are discussed, the base shear force and the bending moment at the bottom of the jacket. The extreme structural responses are considered for wave‐induced and wind‐induced loads for a 100 year return‐period harsh metocean condition with a 14.0 m significant wave height, a 16 s peak spectral period, a 50 m s ? 1 (10 min average) wind speed (at the hub) and a turbulence intensity of 0.1 for a parked wind turbine. After performing the 10 min nonlinear dynamic simulations, a recently proposed extrapolation method is used for obtaining the extreme values of those responses over a period of 3 h. The sensitivity of the extremes to sample size is also studied. The extreme value statistics are estimated from the empirical mean upcrossing rates. This method together with other frequently used methods (i.e. the Weibull tail method and the global maxima method) is compared with the 3 h extreme values obtained directly from the time‐domain simulations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, statistical analysing is performed of wind data measured over a 10 min period based on the Weibull distribution function during one year at three heights carried out to determine the potential of wind in two locations in the Hormozgan province. According to the results, wind speed at 40 m height in Kish city ranged from 4.47 m/s in October to 6.69 m/s in March with average value of 5.32 m/s. However, for Jask city wind speed ranged from 3.4 m/s in January to 5.16 m/s in June with average value of 4.22 m/s. According to world classification of wind power, the wind power density is in class 2 for Kish site while for Jask site it is in class 1. Energy production of different wind turbines at different heights is determined. At the end, an economic evaluation was carried out to determine whether studied sites are suitable for development of small-scale wind turbines.  相似文献   

9.
This paper explores the global wind power potential of Airborne Wind Energy (AWE), a relatively new branch of renewable energy that utilizes airborne tethered devices to generate electricity from the wind. Unlike wind turbines mounted on towers, AWE systems can be automatically raised and lowered to the height of maximum wind speeds, thereby providing a more temporally consistent power production. Most locations on Earth have significant power production potential above the height of conventional turbines. The ideal candidates for AWE farms, however, are where temporally consistent and high wind speeds are found at the lowest possible altitudes, to minimize the drag induced by the tether. A criterion is introduced to identify and characterize regions with wind speeds in excess of 10 m s−1 occurring at least 15% of the time in each month for heights below 3000 m AGL. These features exhibit a jet-like profile with remarkable temporal constancy in many locations and are termed here “wind speed maxima” to distinguish them from diurnally varying low-level jets. Their properties are investigated using global, 40 km-resolution, hourly reanalyses from the National Center for Atmospheric Research's Climate Four Dimensional Data Assimilation, performed over the 1985–2005 period. These wind speed maxima are more ubiquitous than previously thought and can have extraordinarily high wind power densities (up to 15,000 W m−2). Three notable examples are the U.S. Great Plains, the oceanic regions near the descending branches of the Hadley cells, and the Somali jet offshore of the horn of Africa. If an intermediate number of AWE systems per unit of land area could be deployed at all locations exhibiting wind speed maxima, without accounting for possible climatic feedbacks or landuse conflicts, then several terawatts of electric power (1 TW = 1012 W) could be generated, more than enough to provide electricity to all of humanity.  相似文献   

10.
A simple model to generate large band wind speed time sequences, especially easy to implement with a very reduced number of parameters, is presented. It is based on the calculation of a low‐frequency and a high‐frequency components. Low‐frequency component with 1 h sample time is obtained from a random process based on a conditional probability density function. Using real data from two different wind farms in two different months of the year, it has been found that Weibull distribution centered in the current hourly mean value seems to represent well the 1 h conditional PDF in all cases, and the standard deviation of this conditional Weibull is more or less in the range 1–1.3 m s?1 independently of the season of the year or the location. Regarding to high‐frequency component, low‐frequency samples are used as initial and final values and, between them, the turbulence component values are inserted. For that, it has been used a stochastic process based on a Beta probability function and a simple rescaling procedure with two non‐linear parameters, calculated in a recursive way. Unlike the usual modelling procedures presented in the literature, spectral power density functions are not used. This simplifies the implementation significantly. Ten second sample‐time real speed wind data from two different wind farms have been used to validate the proposed high‐frequency model, obtaining excellent results. A thorough revision of the main models found in the literature to produce wind speed time sequences for dynamic analysis is performed in the paper. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
In association with the Department of Energy–funded Position of Offshore Wind Energy Resources (POWER) project, we present results from compositing a 3‐year dataset of 80‐m (above ground level) wind forecasts from the 3‐km High‐Resolution Rapid Refresh (HRRR) model over offshore regions for the contiguous United States. The HRRR numerical weather prediction system runs once an hour and features hourly data assimilation, providing a key advantage over previous model‐based offshore wind datasets. On the basis of 1‐hour forecasts from the HRRR model, we highlight the different climatological regimes of the nearshore environment, characterizing the mean 80‐m wind speed as well as the frequency of exceeding 4, 12, and 25 m s?1 for east and west coast, Gulf of Mexico, and Great Lake locations. Preliminary verification against buoy measurements demonstrates good agreement with observations. This dataset can inform the placement of targeted measurement systems in support of improving resource assessments and wind forecasts to advance offshore wind energy goals both in New England and other coastal regions of the United States.  相似文献   

12.
The wind speed and direction as well as the availability, the duration and the diurnal variation of two offshore sites, Zakinthos and Pylos (BZK and BPY) in the Ionian Sea were assessed. For an analysis period of two years, the mean wind speed at 10 m was determined as 5.7 ± 0.1 m s?1 and 5.8 ± 0.1 m s?1 for the BZK and BPY sites, respectively. The wind speed variations over the hours of the day were quite small. The monthly variation in the average wind speeds was between 4.3 (May) and 7.5 m s?1 (December) for the BZK site and 4.4 (August) and 7.3 m s?1 (December) for the BPY site. Moreover, QuikSCAT satellite mean values for the grids of the two buoy regions were systematically overestimated in comparison to the buoy data with differences in the range from 8 to 13%. Statistical analysis revealed the high QuikSCAT data uncertainty for wind speeds less than 5 m s?1 as the major factor of the observed mean value differences. The mean wind power densities were calculated with the buoy wind speed measurements and were found more than 250 W m?2 at 10 m, suggesting the suitability of the sites for offshore wind energy applications. Capacity factors of up to 48% for energy production were calculated with the existing offshore turbines technology at a hub height of 100 m. Furthermore, the energy yield for different wind turbines and a service life of 20 years were determined from 6.5 to 8.7 and the energy pay-back periods from 2.8 to 2.1 years, respectively. The maximum avoided greenhouse emissions were 140 kt CO2-e for an offshore turbine generator of 5 MW and a period of 20 years.  相似文献   

13.
The accuracy of boundary‐layer wind profiles occurring during nocturnal low‐level jet (LLJ) events, and their sensitivities to variations of user‐specifiable model configuration parameters within the Weather Research and Forecasting model, was investigated. Simulations were compared against data from a wind‐profiling lidar, deployed to the Northern Great Plains during the U.S. Department of Energy‐supported Weather Forecast Improvement Project. Two periods during the autumn of 2011 featuring LLJs of similar magnitudes and durations occurring during several consecutive nights were selected for analysis. Simulated wind speed and direction at 80 and 180 m above the surface, the former a typical wind turbine hub height, bulk vertical gradients between 40 and 120 m, a typical rotor span, and the maximum wind speeds occurring at 80 and 180 m, and their times of occurrence, were compared with the observations. Sensitivities of these parameters to the horizontal and vertical grid spacing, planetary boundary layer and land surface model physics options, and atmospheric forcing dataset, were assessed using ensembles encompassing changes of each of these configuration parameters. Each simulation captured the diurnal cycle of wind speed and stratification, producing LLJs during each overnight period; however, large discrepancies in relation to the observations were frequently observed, with each ensemble producing a wide range of distributions, reflecting highly variable representations of stratification during the weakly stable overnight conditions. Root mean square error and bias values computed over the LLJ cycle (late evening through the following morning) revealed that, while some configurations performed better or worse in different aspects and at different times, none exhibited definitively superior performance. The considerable root mean square error and bias values, even among the ‘best’ performing simulations, underscore the need for improved simulation capabilities for the prediction of near‐surface winds during LLJ conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
An estimation of the monthly wind energy output for the period 1999–2003 at five wind farms in northeastern Spain was evaluated. The methodology involved the calculation of wind speed histograms and the observed average wind power versus wind relation obtained from hourly data. The energy estimation was based on the cumulated contribution of the wind power from each wind speed interval. The impact of the Weibull distribution assumption as a substitute of the actual histogram in the wind energy estimation was evaluated. Results reveal that the use of a Weibull probability distribution has a moderate impact in the energy calculation as the largest estimation errors are, on average, no larger than 10% of the total monthly energy produced. However, the evaluation of the goodness of fit through the χ2 statistics shows that the Weibull assumption is not strictly substantiated for most of the sites. This apparent discrepancy is based on the partial cancellation of the positive and negative departures of the Weibull fitted and the actual wind frequency distributions. Further investigation of the relation between the χ2 and the error contribution exposes a tendency of the Weibull distribution to underestimate (overestimate) the observed histograms in the lower and upper (intermediate) wind speed intervals. This fact, together with the larger wind power weight over the highest winds, results in a systematic total wind energy underestimation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
In this study, we performed a suite of flow simulations for a 12‐wind‐turbine array with varying inflow conditions and lateral spacings, and compared the impacts of the flow on velocity deficit and wake recovery. We imposed both laminar inflow and turbulent inflows, which contain turbulence for the Ekman layer and a low‐level jet (LLJ) in the stable boundary layer. To solve the flow through the wind turbines and their wakes, we used a large‐eddy simulation technique with an actuator‐line method. We compared the time series for the velocity deficit at the first and rear columns to observe the temporal change in velocity deficit for the entire wind farm. The velocity deficit at the first column for LLJ inflow was similar to that for laminar inflow. However, the magnitude of velocity deficit at the rear columns for the case with LLJ inflow was 11.9% greater because of strong wake recovery, which was enhanced by the vertical flux of kinetic energy associated with the LLJ. To observe the spatial transition and characteristics of wake recovery, we performed statistical analyses of the velocity at different locations for both the laminar and LLJ inflows. These studies indicated that strong wake recovery was present, and a kurtosis analysis showed that the probability density function for the streamwise velocity followed a Gaussian distribution. In a quadrant analysis of the Reynolds stress, we found that the ejection and sweep motions for the LLJ inflow case were greater than those for the laminar inflow case.  相似文献   

16.
A coupledwind‐wave modeling system is used to simulate 23 years of storms and estimate offshore extreme wind statistics. In this system, the atmospheric Weather Research and Forecasting (WRF) model and Spectral Wave model for Near shore (SWAN) are coupled, through a wave boundary layer model (WBLM) that is implemented in SWAN. The WBLM calculates momentum and turbulence kinetic energy budgets, using them to transfer wave‐induced stress to the atmospheric modeling. While such coupling has a trivial impact on the wind modeling for 10‐m wind speeds less than 20 ms?1, the effect becomes appreciable for stronger winds—both compared with uncoupled WRF modeling and with standard parameterization schemes for roughness length. The coupled modeling output is shown to be satisfactory compared with measurements, in terms of the distribution of surface‐drag coefficient with wind speed. The coupling is also shown to be important for estimation of extreme winds offshore, where the WBLM‐coupled results match observations better than results from noncoupled modeling, as supported by measurements from a number of stations.  相似文献   

17.
This paper presents an assessment of wind energy potentials of six selected high altitude locations within the North-West and North-East geopolitical regions, Nigeria, by using 36-year (1971–2007) wind speed data subjected to 2-parameter Weibull distribution functions. The results showed that the maximum mean wind speed is obtained in Katsina as 9.839 m/s while the minimum value of 3.397 m/s is got in Kaduna for all the locations considered. The annual wind power density and energy variation based on the Weibull analysis ranged from 368.92 W/m2 and 3224.45 kWh/m2/year to 103.14 W/m2 and 901.75 kWh/m2/year in Kano and Potiskum for the maximum and minimum values respectively. Furthermore, Katsina and Kano will be suitable for wind turbine installations while Gusau will only be appropriate for wind energy utilization using taller wind turbine towers whereas Kaduna, Bauchi and Potiskum will be considered marginal for wind power development based of their respective annual mean wind speeds and power densities.  相似文献   

18.
R. Baïle  J.‐F. Muzy  P. Poggi 《风能》2011,14(6):735-748
Several known statistical distributions can describe wind speed data, the most commonly used being the Weibull family. In this paper, a new law, called ‘M‐Rice’, is proposed for modeling wind speed frequency distributions. Inspired by recent empirical findings that suggest the existence of some cascading process in the mesoscale range, we consider that wind speed can be described by a seasonal AutoRegressive Moving Average (ARMA) model where the noise term is ‘multifractal’, i.e. associated with a random cascade. This leads to the distribution of wind speeds according to the M‐Rice probability distribution function, i.e. a Rice distribution multiplicatively convolved with a normal law. A comparison based on the estimation of the mean wind speed and power density values as well as on the different goodness‐of‐fit tests (the Kolmogorov–Smirnov test, the Kuiper test and the quantile–quantile plot) was made between this new distribution and the Weibull distribution for 35 data sets of wind speed from the Netherlands and Corsica (France) sites. Accordingly, the M‐Rice and Weibull distributions provided comparable performances; however, the quantile–quantile plots suggest that the M‐Rice distribution provides a better fit of extreme wind speed data. Beyond these good results, our approach allows one to interpret the observed values of Weibull parameters. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
The recently developed k?fP eddy‐viscosity model is applied to one on‐shore and two off‐shore wind farms. The results are compared with power measurements and results of the standard k? eddy‐viscosity model. In addition, the wind direction uncertainty of the measurements is used to correct the model results with a Gaussian filter. The standard k? eddy‐viscosity model underpredicts the power deficit of the first downstream wind turbines, whereas the k?fP eddy‐viscosity model shows a good agreement with the measurements. However, the difference in the power deficit predicted by the turbulence models becomes smaller for wind turbines that are located further downstream. Moreover, the difference between the capability of the turbulence models to estimate the wind farm efficiency reduces with increasing wind farm size and wind turbine spacing. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, wind characteristic and wind energy potential of the Uluda? skinning which is located in the south Marmara region of Turkey were analyzed using the wind speed data collected during the period 2000–2006. The wind speed distribution curves of Uluda?-Bursa were obtained by using the Weibull and Rayleigh probability density functions. The average Weibull shape parameter k and scale parameter c were found as 1.78 and 7.97 m/s for the period 2000–2006. The yearly mean wind speed in Uluda?-Bursa was obtained as 7.08 m/s for period of 7 years. A technical and economic assessment has been made of electricity generation from four wind turbines having capacity of (600, 1000, 1500 and 2000 kW). The yearly energy output, capacity factor and the electrical energy cost of kW h produced by the three different turbines were calculated. The cost of each kW h produced using the chosen wind turbines in Uluda?-Bursa were found to between 0.255 and 0.306 $/kW h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号