首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rolf‐Erik Keck  Ove Undheim 《风能》2015,18(9):1671-1682
This paper presents a computationally efficient method for using the dynamic wake meandering model to conduct simulations of wind farm power production. The method is based on creating a database, which contains the time and rotor‐averaged wake effect at any point downstream of a wake‐emitting turbine operating in arbitrary ambient conditions and at an arbitrary degree of wake influence. This database is later used as a look‐up table at runtime to estimate the operating conditions at all turbines in the wind farm, thus eliminating the need to run the dynamic wake meandering model at runtime. By using the proposed method, the time required to conduct wind farm simulations is reduced by three orders of magnitude compared with running the standalone dynamic wake meandering model at runtime. As a result, the wind farm production dynamics for a farm of 100 turbines at 10,000 different sets of ambient conditions run on a normal laptop in 1 h. The method is validated against full scale measurements from the Smøla and OWEZ wind farms, and fair agreement is achieved. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Aerodynamic wake interaction between commercial scale wind turbines can be a significant source of power losses and increased fatigue loads across a wind farm. Significant research has been dedicated to the study of wind turbine wakes and wake model development. This paper profiles influential wake regions for an onshore wind farm using 6 months of recorded SCADA (supervisory control and data acquisition) data. An average wind velocity deficit of over 30% was observed corresponding to power coefficient losses of 0.2 in the wake region. Wind speed fluctuations are also quantified for an array of turbines, inferring an increase in turbulence within the wake region. A study of yaw data within the array showed turbine nacelle misalignment under a range of downstream wake angles, indicating a characteristic of wind turbine behaviour not generally considered in wake studies. The turbines yaw independently in order to capture the increased wind speeds present due to the lateral influx of turbulent wind, contrary to many experimental and simulation methods found in the literature. Improvements are suggested for wind farm control strategies that may improve farm‐wide power output. Additionally, possible causes for wind farm wake model overestimation of wake losses are proposed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
With the increasing demand for wind energy, it is important to be able to understand and predict the available wind resources. To that end, the present wind tunnel study addresses the flow in the induction and entrance region of wind farms through particle image velocimetry, with focus on differences between actuator disks and two-bladed rotating wind turbine models. Both staggered and aligned farm layouts are examined for three different incoming wind directions. For each layout, 69 disks or turbines are used, and the field of view ranges from 12 rotor diameters upstream of the farms to 8 diameters downstream of the first row. The results show that the induction, or blockage effect, is higher for the disks, even though the thrust (or drag) coefficient is the same. In contrast, the wake is stronger downstream of the turbines. The orientation and layout of the farm do not have a major impact on the results. Modal decomposition of the flow shows that the flow structure similarity between the disk and turbines improves downstream of the second row of wake generating objects, indicating that the substitution of wind turbines by actuator disks is more appropriate for wind farms than for the investigation of single wakes.  相似文献   

4.
以某典型风电场为例,采用尾流模型模拟研究风电机组启停优化对风电机组尾流干涉和发电量的影响。在速度恢复系数小于0.06时,典型机位的停机可增加风电场全场发电量。以中国北方某实际风电场为例进行现场试验,在主风向下,通过调度上游风电机组的启停,实现区域内风电机组发电量提升,验证方法的有效性。  相似文献   

5.
It is well accepted that the wakes created by upstream turbines significantly impact on the power production and fatigue loading of downstream turbines and that this phenomenon affects wind farm performance. Improving the understanding of wake effects and overall efficiency is critical for the optimisation of layout and operation of increasingly large wind farms. In the present work, the NREL 5‐MW reference turbine was simulated using blade element embedded Reynolds‐averaged Navier‐Stokes computations in sheared onset flow at three spatial configurations of two turbines at and above rated flow speed to evaluate the effects of wakes on turbine performance and subsequent wake development. Wake recovery downstream of the rearward turbine was enhanced due to the increased turbulence intensity in the wake, although in cases where the downstream turbine was laterally offset from the upstream turbine this resulted in relatively slower recovery. Three widely used wake superposition models were evaluated and compared with the simulated flow‐field data. It was found that when the freestream hub‐height flow speed was at the rated flow speed, the best performing wake superposition model varied depending according to the turbine array layout. However, above rated flow speed where the wake recovery distance is reduced, it was found that linear superposition of single turbine velocity deficits was the best performing model for all three spatial layouts studied.  相似文献   

6.
When a wind turbine works in yaw, the wake intensity and the power production of the turbine become slightly smaller and a deflection of the wake is induced. Therefore, a good understanding of this effect would allow an active control of the yaw angle of upstream turbines to steer the wake away from downstream machines, reducing its effect on them. In wind farms where interaction between turbines is significant, it is of interest to maximize the power output from the wind farm as a whole and to reduce fatigue loads on downstream turbines due to the increase of turbulence intensity in wakes. A large eddy simulation model with particular wind boundary conditions has been used recently to simulate and characterize the turbulence generated by the presence of a wind turbine and its evolution downstream the machine. The simplified turbine is placed within an environment in which relevant flow properties like wind speed profile, turbulence intensity and the anisotropy of turbulence are found to be similar to the ones of the neutral atmosphere. In this work, the model is used to characterize the wake deflection for a range of yaw angles and thrust coefficients of the turbine. The results are compared with experimental data obtained by other authors with a particle image velocimetry technique from wind tunnel experiments. Also, a comparison with simple analytical correlations is carried out. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Wind turbines arranged in a wind plant impact each other through their wakes. Wind plant control is an active research field that attempts to improve wind plant performance by coordinating control of individual turbines to take into account these turbine–wake interactions. In this paper, high‐fidelity simulations of a two‐turbine fully waked scenario are used to investigate several wake mitigation strategies, including modification of yaw and tilt angles of an upstream turbine to induce wake skew, as well as repositioning of the downstream turbine. The simulation results are compared through change relative to a baseline operation in terms of overall power capture and loading on the upstream and downstream turbine. Results demonstrated improved power production for all methods. Analysis of control options, including individual pitch control, shows potential to minimize the increase of, or even reduce, turbine loads.Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Wei Tian  Ahmet Ozbay  Hui Hu 《风能》2018,21(2):100-114
An experimental investigation was conducted for a better understanding of the wake interferences among wind turbines sited in wind farms with different turbine layout designs. Two different types of inflows were generated in an atmospheric boundary layer wind tunnel to simulate the different incoming surface winds over typical onshore and offshore wind farms. In addition to quantifying the power outputs and dynamic wind loads acting on the model turbines, the characteristics of the wake flows inside the wind farms were also examined quantitatively. After adding turbines staggered between the first 2 rows of an aligned wind farm to increase the turbine number density in the wind farm, the added staggered turbines did not show a significant effect on the aeromechanical performance of the downstream turbines for the offshore case. However, for the onshore case, while the upstream staggered turbines have a beneficial effect on the power outputs of the downstream turbines, the fatigue loads acting on the downstream turbines were also found to increase considerably due to the wake effects induced by the upstream turbines. With the same turbine number density and same inflow characteristics, the wind turbines were found to be able to generate much more power when they are arranged in a staggered layout than those in an aligned layout. In addition, the characteristics of the dynamic wind loads acting on the wind turbines sited in the aligned layout, including the fluctuation amplitudes and power spectrum, were found to be significantly different from those with staggered layout.  相似文献   

9.
Wind farm control using dynamic concepts is a research topic that is receiving an increasing amount of interest. The main concept of this approach is that dynamic variations of the wind turbine control settings lead to higher wake turbulence, and subsequently faster wake recovery due to increased mixing. As a result, downstream turbines experience higher wind speeds, thus increasing their energy capture. In dynamic induction control (DIC), the magnitude of the thrust force of an upstream turbine is varied. Although very effective, this approach also leads to increased power and thrust variations, negatively impacting energy quality and fatigue loading. In this paper, a novel approach for the dynamic control of wind turbines in a wind farm is proposed: using individual pitch control, the fixed‐frame tilt and yaw moments on the turbine are varied, thus dynamically manipulating the wake. This strategy is named the helix approach because the resulting wake has a helical shape. Large eddy simulations of a two‐turbine wind farm show that this approach leads to enhanced wake mixing with minimal power and thrust variations.  相似文献   

10.
为研究垂直轴风力机风场中机组气动性能受格尼襟翼的影响,采用TSST湍流模型对直线翼垂直轴风力机进行数值模拟研究.结果表明:风场上游风力机组尖速比越大,机组间流体加速效果越显著,使风力机组气动性能高于单风力机;在中低尖速比时,格尼襟翼可有效提升单个风力机气动效率,在尖速比较高时,提升效果并不明显;在风力机组中安装格尼襟翼...  相似文献   

11.
The potential benefits associated with harnessing available momentum and reducing turbulence levels in a wind farm composed of wind turbines of alternating size are investigated through wind tunnel experiments. A variable size turbine array composed of 3 by 8 model wind turbines is placed in a boundary layer flow developed over both a smooth and rough surfaces under neutrally stratified thermal conditions. Cross‐wire anemometry is used to capture high resolution and simultaneous measurements of the streamwise and vertical velocity components at various locations along the central plane of the wind farm. A laser tachometer is employed to obtain the instantaneous angular velocity of various turbines. The results suggest that wind turbine size heterogeneity in a wind farm introduces distinctive flow interactions not possible in its homogeneous counterpart. In particular, reduced levels of turbulence around the wind turbine rotors may have positive effects on turbulent loading. The turbines also appear to perform quite uniformly along the entire wind farm, whereas surface roughness impacts the velocity recovery and the spectral content of the turbulent flow within the wind farm. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
为减小风电场尾流效应的影响,提升风电场整体发电量,提出一种基于偏航尾流模型的风电场功率协同优化方法。首先建立风电场偏航尾流模型,该模型包括用于计算单机组尾流速度分布的Jensen-Gaussian尾流模型、尾流偏转模型及多机组尾流叠加模型,对各机组风轮前来流风速进行求解;再根据来流风速计算风电场输出功率,并以风电场整体输出功率最大为优化目标,利用拟牛顿算法协同优化各机组轴向诱导因子和偏航角度。以4行4列方形布置的16台NREL-5 MW风电机组为对象进行仿真研究。结果表明,所提出的基于偏航尾流模型的风电场功率协同优化方法能显著提升风电场整体输出功率。  相似文献   

13.
An experimental study of wind farm blockage has been performed to quantify the velocity decrease that the first row of a wind farm experiences due to the presence of the other turbines downstream. The general perception has been that turbines downstream of the first row are only influenced by the wakes from upstream turbines without any upstream effect. In the present study, an attempt is made to demonstrate the existence of a two‐way coupling between individual turbines and turbines in the wind farm. Several staggered layouts were tested in the wind tunnel experiments by changing the spacing between rows, spacing between turbines in the rows, and the amount of wind turbines involved. The experiments focused on turbines located in the center of the first row as well as the two turbines located in the row edges, usually believed to experience a speedup. The present results show that no speedup is present and that all the turbines in the first row are subjected to a reduced wind speed. This phenomenon has been considered to be due to “global blockage.” An empirical correlation formula between spacing, number of rows, and velocity decrease is proposed to quantify such effect for the center turbine as well as for the turbines at the edges.  相似文献   

14.
A technoeconomic analysis and optimization of wind turbine size and layout are performed using WAsP software. A case study of a 100‐MW wind farm located in Egypt is considered. Wind atlas for Egypt was used as the input data of the WAsP software. Two turbine models of powers 52 and 80 MW are considered for this project. The wind turbine size and distributions are selected based on the technoeconomic optimization, namely minimum wake effect, maximum annual energy production (AEP) rate, optimum cash flow, and payback period. The future worth method is adopted in economic comparison between the two alternatives, and the cash flow diagram provided the payback period and future worth after the lifetime of the plant. The results showed that (1) the AEP dramatically decreases for a wind farm area less than 15 km2; (2) the turbine spacing, spacing‐to‐diameter ratio, and the setback distances decrease and the wind turbine density and wake losses increase with decreasing the wind turbines size; (3) the total net AEP using G52 is lower than that of using G80 by about 16%; (4) the technoeconomic analysis recommended using G80 as it has higher profit than those of G52 by about $20 million.  相似文献   

15.
In this study, we address the benefits of a vertically staggered (VS) wind farm, in which vertical‐axis and horizontal‐axis wind turbines are collocated in a large wind farm. The case study consists of 20 small vertical‐axis turbines added around each large horizontal‐axis turbine. Large‐eddy simulation is used to compare power extraction and flow properties of the VS wind farm versus a traditional wind farm with only large turbines. The VS wind farm produces up to 32% more power than the traditional one, and the power extracted by the large turbines alone is increased by 10%, caused by faster wake recovery from enhanced turbulence due to the presence of the small turbines. A theoretical analysis based on a top‐down model is performed and compared with the large‐eddy simulation. The analysis suggests a nonlinear increase of total power extraction with increase of the loading of smaller turbines, with weak sensitivity to various parameters, such as size, and type aspect ratio, and thrust coefficient of the vertical‐axis turbines. We conclude that vertical staggering can be an effective way to increase energy production in existing wind farms. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
In the present work, the wake development behind small‐scale wind turbines is studied when introducing local topography variations consisting of a series of sinusoidal hills. Additionally, wind‐tunnel tests with homogeneous and sheared turbulent inflows were performed to understand how shear and ambient turbulence influence the results. The scale of the wind‐turbine models was about 1000 times smaller than full‐size turbines, suggesting that the present results should only be qualitatively extrapolated to real‐field scenarios. Wind‐tunnel measurements were made by means of stereoscopic particle image velocimetry to characterize the flow velocity in planes perpendicular to the flow direction. Over flat terrain, the wind‐turbine wake was seen to slowly approach the ground while it propagated downstream. When introducing hilly terrain, the downward wake deflection was enhanced in response to flow variations induced by the hills, and the turbulent kinetic energy content in the wake increased because of the speed‐up seen over the hills. The combined wake observed behind 2 streamwise aligned turbines was more diffused and when introducing hills, it was more prone to deflect towards the ground compared to the wake behind an isolated turbine. Since wake interactions are common at sites with multiple turbines, this suggested that it is important to consider the local hill‐induced velocity variations when onshore wind farms are analysed. Differences in the flow fields were seen when introducing either homogeneous or sheared turbulent inflow conditions, emphasizing the importance of accounting for the prevailing turbulence conditions at a given wind‐farm site to accurately capture the downstream wake development.  相似文献   

17.
In this study, we propose the use of model‐based receding horizon control to enable a wind farm to provide secondary frequency regulation for a power grid. The controller is built by first proposing a time‐varying one‐dimensional wake model, which is validated against large eddy simulations of a wind farm at startup. This wake model is then used as a plant model for a closed‐loop receding horizon controller that uses wind speed measurements at each turbine as feedback. The control method is tested in large eddy simulations with actuator disk wind turbine models representing an 84‐turbine wind farm that aims to track sample frequency regulation reference signals spanning 40 min time intervals. This type of control generally requires wind turbines to reduce their power set points or curtail wind power output (derate the power output) by the same amount as the maximum upward variation in power level required by the reference signal. However, our control approach provides good tracking performance in the test system considered with only a 4% derate for a regulation signal with an 8% maximum upward variation. This performance improvement has the potential to reduce the opportunity cost associated with lost revenue in the bulk power market that is typically associated with providing frequency regulation services. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
Numerous studies have shown that wind turbine wakes within a large wind farm bring about changes to both the dynamics and thermodynamics of the atmospheric boundary layers (ABL). Previously, we investigated the relative humidity budget within a wind farm via field measurements in the near‐wake region and large eddy simulations (LES). The effect of the compounding wakes within a large wind farm on the relative humidity was also investigated by LES. In this study, we investigate how the areas of relative humidity variation, that was observed in the near‐wake, develop downstream in the shadow region of a large wind farm. To this end, LES of a wind farm consisting of 8x6 wind turbines with periodic boundary condition in the lateral direction (inferring an infinitely wide farm) interacting with a stable ABL is carried out. Two wind farm layouts, aligned and staggered, are considered in the analysis and the results from both configurations are compared to each other. It is observed that a decrease of relative humidity underneath the hub height and an increase above the hub height build up within the wind farm, and are maintained in the downstream of the farm for long distances. The staggered farm layout is more effective in keeping a more elongated region of low relative humidity underneath the hub, when compared to the aligned layout.  相似文献   

19.
Fabio Pierella  Lars Sætran 《风能》2017,20(10):1753-1769
In wind farms, the wake of the upstream turbines becomes the inflow for the downstream machines. Ideally, the turbine wake is a stable vortex system. In reality, because of factors like background turbulence, mean flow shear, and tower‐wake interaction, the wake velocity deficit is not symmetric and is displaced away from its mean position. The irregular velocity profile leads to a decreased efficiency and increased blade stress levels for the downstream turbines. The object of this work is the experimental investigation of the effect of the wind turbine tower on the symmetry and displacement of the wake velocity deficit induced by one and two in‐line model wind turbines (,D= 0.9 m). The results of the experiments, performed in the closed‐loop wind tunnel of the Norwegian University of Science and Technology in Trondheim (Norway), showed that the wake of the single turbine expanded more in the horizontal direction (side‐wall normal) than in the vertical (floor normal) direction and that the center of the wake vortex had a tendency to move toward the wind tunnel floor as it was advected downstream from the rotor. The wake of the turbine tandem showed a similar behavior, with a larger degree of non‐symmetry. The analysis of the cross‐stream velocity profiles revealed that the non‐symmetries were caused by a different cross‐stream momentum transport in the top‐tip and bottom‐tip region, induced by the turbine tower wake. In fact, when a second additional turbine tower, mirroring the original one, was installed above the turbine nacelle, the wake recovered its symmetric structure. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
The wind turbines within a wind farm impact each other's power production and loads through their wakes. Wake control strategies, aiming to reduce wake effects, receive increasing interest by both the research community and the industry. A number of recent simulation studies with high fidelity wake models indicate that wake mitigation control is a very promising concept for increasing the power production of a wind farm and/or reducing the fatigue loading on wind turbines' components. The purpose of this paper is to study the benefits of wake mitigation control in terms of lifetime power production and fatigue loading on several existing full‐scale commercial wind farms with different scale, layouts, and turbine sizes. For modeling the wake interactions, Energy Research Centre of the Netherlands' FarmFlow software is used: a 3D parabolized Navier‐Stokes code, including a k? turbulence model. In addition, an optimization approach is proposed that maximizes the lifetime power production, thereby incorporating the fatigue loads into the optimization criterion in terms of a lifetime extension factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号