首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Downwind force angles are small for current turbines systems (1–5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme‐scale systems (10–20 MW) will have larger angles that may benefit from downwind‐aligned configurations. To examine potential rotor mass reduction, the pre‐alignment concept was investigated a two‐bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re‐design). Simulations for a 13.2 MW rated rotor at steady‐state conditions show that this concept‐level two‐bladed design may yield 25% rotor mass savings while also reducing average blade stress over all wind speeds. These results employed a pre‐alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre‐aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15–20 MW) for which load‐alignment angles become even larger. However, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

2.
Carlos Noyes  Chao Qin  Eric Loth 《风能》2020,23(2):357-369
Extreme‐scale wind turbines (rated powers greater than 10 MW) with large rotor diameters and conventional upwind designs must resist extreme downwind and gravity loads. This can lead to significant structural design challenges and high blade masses that can impede the reduction of levelized cost of wind energy. Herein, the theoretical basis for downwind load alignment is developed. This alignment can be addressed with active downwind coning to reduce/eliminate flapwise bending loads by balancing the transverse components of thrust, centrifugal, and gravitational force. Equations are developed herein that estimates the optimal coning angle that reduces flapwise loads by a specified amount. This analysis is then applied to a 13.2‐MW scale with 100‐m‐level wind turbine blades, where it is found that a load alignment coning schedule can substantially reduce the root flapwise bending moments. This moment reduction in this example can allow the rotor mass to be decreased significantly when compared with a conventional upwind three‐bladed rotor while maintaining structural performance and annual energy output.  相似文献   

3.
With the increasing size of offshore wind turbine rotors, the design criteria used for the blades may also evolve. Current offshore technology utilizes three relatively stiff blades in an upwind configuration. With the goal of minimizing the mass, there is an interest in the lightweight rotors that instead utilize two flexible blades oriented downwind. These longer blades are more flexible and thus susceptible to experience flow‐induced instability. Coupled‐mode flutter is one of the destructive aeroelastic instabilities that can occur in flexible structures subjected to aerodynamic loading. Because of variation in one of the system parameters, e.g., flow velocity, structural modes coalesce at a critical flow velocity, and coupled‐flutter occurs. In the present work, a parametric study is conducted in order to study the influence of the natural frequencies in the torsional and flapwise directions on the critical flutter speed for wind turbine blades. Three MW‐size wind turbine blades are studied using a three‐dimensional blade model, which includes coupled flapwise and torsional displacements. The results show that the three blades have very similar behavior as the system parameters vary. It is shown that the first torsional natural frequency and the ratio of the first torsional natural frequency to the first flapwise natural frequency are the most critical parameters affecting the onset of instability. Critical flutter speeds even lower than the blade rated speed can be observed for blades with low torsional natural frequencies. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This work considers the design driving load cases from a full design load basis analysis on an upwind turbine changed into a downwind configuration. The upwind turbine is a commercial class IIIA 2.1‐MW turbine, manufactured by Suzlon. The downwind turbine shows an increase in the normalized tower clearance by 6%, compared with the upwind concept. Removing the blade prebend increases the normalized minimum tower clearance by 17% in the downwind configuration compared with the upwind configuration. The extreme loads on the longitudinal tower bottom bending moment are seen to generally increase by 17% because of the overhanging gravity moment of the rotor‐nacelle assembly. The extreme blade root bending moments are reduced by 10% flapwise, because of the coning of the rotor in downwind direction. The fatigue loads suffer from the tower shadow, leading to an overall increase of the fatigue loads in the blades with up to 5% in flapwise direction in the downwind configuration. Because of blade deflection and coning direction, the downwind configuration shows a 0.75% lower annual energy production. Removing the prebend increases the annual energy production loss to 1.66%.  相似文献   

5.
Most numerical and experimental studies of the performance of vertical‐axis wind turbines have been conducted with the rotors in steady, and thus somewhat artificial, wind conditions—with the result that turbine aerodynamics, under varying wind conditions, are still poorly understood. The vorticity transport model has been used to investigate the aerodynamic performance and wake dynamics, both in steady and unsteady wind conditions, of three different vertical‐axis wind turbines: one with a straight‐bladed configuration, another with a curved‐bladed configuration and another with a helically twisted configuration. The turbines with non‐twisted blades are shown to be somewhat less efficient than the turbine with helically twisted blades when the rotors are operated at constant rotational speed in unsteady wind conditions. In steady wind conditions, the power coefficients that are produced by both the straight‐bladed and curved‐bladed turbines vary considerably within one rotor revolution because of the continuously varying angle of attack on the blades and, thus, the inherent unsteadiness in the blade aerodynamic loading. These variations are much larger, and thus far more significant, than those that are induced by the unsteadiness in the wind conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
In this study, an innovative concept for load reduction on the two‐bladed Skywind 3.4 MW prototype is presented. The load reduction system consists of a flexible coupling between the hub mount, carrying the drive train components including the hub assembly, and a nacelle carrier supported by the yaw bearing. This paper intends to assess the impact of introducing a flexible hub connection on the system dynamics and the aero‐elastic response to aerodynamic load imbalances. In order to limit the rotational joint motion, a cardanic spring‐damper element is introduced between the hub mount and the nacelle carrier flange, which affects the system response and the loads. A parameter variation of the stiffness and damping of the connecting spring‐damper element has been performed in the multi‐body simulation solver Simpack. A deterministic, vertically sheared wind field is applied to induce a periodic aerodynamic imbalance on the rotor. The aero‐structural load reduction mechanisms of the coupled system are thereby identified. It is shown that the fatigue loads on the blades and the turbine support structure are reduced significantly. For a very low structural coupling, however, the corresponding rotational deflections of the hub mount exceed the design limit of operation. The analysis of the interaction between the hub mount motion and the blade aerodynamics in a transient inflow environment indicates a reduction of the angle of attack amplitudes and the corresponding fluctuations of the blade loading. Hence, it can be concluded that load reduction is achieved by a combination of reduced structural coupling and a mitigation of aerodynamic load imbalances. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
In this article, the conventional individual pitch control (IPC) strategy for wind turbines is reviewed, and a linear IPC strategy for two‐bladed wind turbines is proposed. The typical approach of IPC for three‐bladed rotors involves a multi‐blade coordinate (MBC) transformation, which transforms measured blade load signals, i.e., signals measured in a rotating frame of reference, to signals in a fixed non‐rotating frame of reference. The fixed non‐rotating signals, in the so‐called yaw and tilt direction, are decoupled by the MBC transformation, such that single‐input single‐output (SISO) control design is possible. Then, SISO controllers designed for the yaw and tilt directions provide pitch signals in the non‐rotating frame of reference, which are then reverse transformed to the rotating frame of reference so as to obtain the desired pitch actuator signals. For three‐bladed rotors, the aforementioned method is a proven strategy to significantly reduce fatigue loadings on pitch controlled wind turbines. The same MBC transformation and approach can be applied to two‐bladed rotors, which also results in significant load reductions. However, for two‐bladed rotors, this MBC transformation is singular and therefore, not uniquely defined. For that reason, a linear non‐singular coordinate transformation is proposed for IPC of two‐bladed wind turbines. This transformation only requires a single control loop to reduce the once‐per‐revolution rotating blade loads (‘1P’ loads). Moreover, all harmonics (2P, 3P, etc.) in the rotating blade loads can be accounted for with only two control loops. As in the case of the MBC transformation, also the linear coordinate transformation decouples the control loops to allow for SISO control design. High fidelity simulation studies on a two‐bladed wind turbine without a teetering hub prove the effectiveness of the concept. The simulation study indicates that IPC based on the linear coordinate transformation provides similar load reductions and requires similar pitch actuation compared with the conventional IPC approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The aerodynamic interactions that can occur within a wind farm can result in the constituent turbines generating a lower power output than would be possible if each of the turbines were operated in isolation. Tightening of the constraints on the siting of wind farms is likely to increase the scale of the problem in the future. The aerodynamic performance of turbine rotors and the mechanisms that couple the fluid dynamics of multiple rotors can be most readily understood by simplifying the problem and considering the interaction between only two rotors. The aerodynamic interaction between two rotors in both co‐axial and offset configurations has been simulated using the Vorticity Transport Model. The aerodynamic interaction is a function of the tip speed ratio, and both the streamwise and crosswind separation between the rotors. The simulations show that the momentum deficit at a turbine operating within the wake developed by the rotor of a second turbine is governed by the development of instabilities within the wake of the upwind rotor, and the ensuing structure of the wake as it impinges on the downwind rotor. If the wind farm configuration or wind conditions are such that a turbine rotor is subject to partial impingement by the wake produced by an upstream turbine, then significant unsteadiness in the aerodynamic loading on the rotor blades of the downwind turbine can result, and this unsteadiness can have considerable implications for the fatigue life of the blade structure and rotor hub. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
D. J. Malcolm 《风能》1999,2(2):79-98
Stall‐controlled, teetered, free‐yaw downwind turbines have historically experienced higher than desired peak loads due to occasional large teeter excursions when the blades are stalled. Understanding of the causes of these excursions and the potential solution have been the subject of much research in the past. This article contributes to this study in three areas. One is the development of the equations of motion for a teetered rotor with a delta‐3 angle. The solution of these equations leads to an improved understanding of the mechanics of these types of rotors and to a theory concerning how the rotor responds to different overall aerodynamic moments. A second contribution is a set of test cases to confirm the theories developed and to show how wind speed and different delta‐3 angles affect the restoring moments on the rotor and nacelle. A final contribution is an ADAMS® analysis of the fatigue loading of the AWT‐27 under high turbulent wind speeds with different delta‐3 angles and the comparison with results of a field testing programme. Both the predictions and the field data point to the more benign response of a hub having a negative delta‐3 angle. This contradicts previous opinions but is consistent with the criteria presented in this article. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
Andrew Ning  Derek Petch 《风能》2016,19(12):2137-2152
Wind turbines are complex systems where component‐level changes can have significant system‐level effects. Effective wind turbine optimization generally requires an integrated analysis approach with a large number of design variables. Optimizing across large variable sets is orders of magnitude more efficient with gradient‐based methods as compared with gradient‐free method, particularly when using exact gradients. We have developed a wind turbine analysis set of over 100 components where 90% of the models provide numerically exact gradients through symbolic differentiation, automatic differentiation, and adjoint methods. This framework is applied to a specific design study focused on downwind land‐based wind turbines. Downwind machines are of potential interest for large wind turbines where the blades are often constrained by the stiffness required to prevent a tower strike. The mass of these rotor blades may be reduced by utilizing a downwind configuration where the constraints on tower strike are less restrictive. The large turbines of this study range in power rating from 5–7MW and in diameter from 105m to 175m. The changes in blade mass and power production have important effects on the rest of the system, and thus the nacelle and tower systems are also optimized. For high‐speed wind sites, downwind configurations do not appear advantageous. The decrease in blade mass (10%) is offset by increases in tower mass caused by the bending moment from the rotor‐nacelle‐assembly. For low‐wind speed sites, the decrease in blade mass is more significant (25–30%) and shows potential for modest decreases in overall cost of energy (around 1–2%). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
The prospect of installing blades that twist as they bend and/or extend on horizontal axis wind turbines provides opportunities for enhanced energy capture and/or load mitigation. Although this coupling could be achieved in either an active or a passive manner, the passive approach is much more attractive owing to its simplicity and economy. As an example, a blade design might employ coupling between bending and twisting, so that as the blade bends owing to the action of the aerodynamic loads, it also twists, modifying the aerodynamic performance in some way. For reducing loads the blades are designed to twist towards feather as they bend. For variable‐speed pitch‐controlled rotors, dynamic computer simulations with turbulent inflow show that twist coupling substantially decreases fatigue damage over all wind speeds, without reducing average power. Maximum loads also decrease modestly. For constant‐speed stall‐controlled and variable‐speed stall‐controlled rotors, significant decreases in fatigue damage are observed at the lower wind speeds and smaller decreases at the higher wind speeds. Maximum loads also decrease slightly. As a general observation, whenever a rotor is operating in the linear aerodynamic range (lower wind speeds for stall control and all wind speeds for pitch control), substantial reductions in fatigue damage are realized. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
A brief summary of the main challenges of rotor design in wind energy conversion (WEC) systems, most notably the horizontal axis wind turbine (HAWT), are presented. One of the limiting factors in HAWT design is choosing the rated capacity to maximize power output and turbine longevity. One such strategy to accomplish this goal is to widen the operational range of the WEC system by using pitch or torque control, which can be costly and subject to mechanical failure. We present a morphing airfoil concept, which passively controls airfoil pitch through elastic deformation. As a justification of the concept, a two‐dimensional fluid‐structure interaction routine is used to simulate the aeroelastic response of a symmetric NACA 0012 blade subjected to variable loading. The results suggest that the morphing blade can be designed to offer superior average lift to drag ratios over a specified range of attack angles by up to 4.2%, and possibly even higher. This infers that the morphing blade design can increase the power production of WEC systems while conceivably reducing cost because the passive deformation of the morphing turbine does not require active control systems that come at an added upfront and maintenance cost. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Wind energy technology is evolving towards larger machines (longer blades, taller towers and more powerful generators). Scaling up wind turbines is a challenging task, which requires innovative solutions as well as new configurations and designs. The size of wind turbines (in terms of rotor diameter, hub height and rated power) has increased extraordinary from 30 m rotor diameter, 30 m of hub height and 300 kW rated power, usual in the late 1980s, to 92.7 m rotor diameter, 87.7 m of height and 2.1 MW on average at the end of 2014. However, technological evolution has not only been focused on the scaling up process but also on developing innovative solutions that minimize costs at the same time as they deal with aspects of different nature, such as grid code requirements, reliability, quality of the wind resource or prices and availability of certain commodities, among others. This paper analyses the evolution of wind technology from a market‐based perspective by identifying trends in the most relevant technological indicators at the same time as stressing the key differentiating aspects between regions/markets. Evolution and trends in indicators such as rated power, rotor diameter, hub height, specific power, wind class, drive train configuration and power control systems are presented and analysed, showing an intense and fast technological development, which is enabling wind energy to reduce costs and becoming increasingly more competitive with conventional fuel‐based generating technologies. © 2016 The Authors Wind Energy Published by John Wiley & Sons Ltd.  相似文献   

14.
David J. Malcolm 《风能》2020,23(2):129-147
Vertical axis wind turbines have suffered from the periodic nature of the aerodynamic loads and early efforts at commercialization were plagued by fatigue issues resulting from an inability to anticipate critical resonances. This paper examines the criteria for determining whether intersections of harmonics of the rotor speeds and natural frequencies will be damaging in two‐ or three‐bladed machines. The approach involves expressing the complex natural modes and also the aerodynamic loads and structural response as components of the real, stationary modes. The results show that the symmetry offered by three‐bladed rotors leads to many intersections being benign whereas the two‐bladed rotor does not benefit in this way.  相似文献   

15.
This paper presents the results of field tests using linear individual pitch control (LIPC) on the two‐bladed Controls Advanced Research Turbine 2 (CART2) at the National Renewable Energy Laboratory (NREL). LIPC has recently been introduced as an alternative to the conventional individual pitch control (IPC) strategy for two‐bladed wind turbines. The main advantage of LIPC over conventional IPC is that it requires, at most, only two feedback loops to potentially reduce the periodic blade loads. In previous work, LIPC was designed to implement blade pitch angles at a fixed frequency [e.g., the once‐per‐revolution (1P) frequency], which made it only applicable in above‐rated wind turbine operating conditions. In this study, LIPC is extended to below‐rated operating conditions by gain scheduling the controller on the rotor speed. With this extension, LIPC and conventional IPC are successfully applied to the NREL CART2 wind turbine. The field‐test results obtained during the measurement campaign indicate that LIPC significantly reduces the wind turbine loads for both below‐rated and above‐rated operation. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Carlos Noyes  Chao Qin  Eric Loth 《风能》2020,23(3):458-470
The downwind rotor configuration provides a structural advantage compared with an upwind design. However, tower shadow has long been a concern for downwind systems. The tower shadow negatively affects the blade by introducing a load impulse during the wake passage. An aerodynamic fairing could shroud the tower reducing the wake. However, there is no clear consensus on the importance of a tower shadow for utility‐scale wind turbines. Simulations were conducted in FAST to determine the general parameters that influence the importance of the tower shadow effect for the differently sized wind turbines. The lock number of the blade was a significant driving quantity. Lower lock numbers (typical of small‐scale wind turbines) lead to greater relative fatigue damage from tower shadow effects. It was determined that a fairing is very helpful for small‐scale wind turbines operating in a low‐turbulence environment (such as a subscale wind tunnel test). However, the tower shadow increased the damage equivalent loading on an extreme scale blade by less than 5% in a turbulent environment. These results indicate that the cost of a tower fairing is likely unnecessary for utility‐scale wind turbines in operation.  相似文献   

17.
Dynamic stall was controlled on a double‐bladed H‐Rotor vertical axis wind turbine model using pulsed dielectric barrier discharge plasma actuators in a feed‐forward control configuration. The azimuthal angles of plasma actuation initiation and termination, that produced the largest increases in power, were determined parametrically on the upstream half of the turbine azimuth in a low‐speed blow‐down wind tunnel at wind speeds of 7 m/s. A mathematical model, together with instantaneous turbine speed, was used to estimate transient torque and power developed by the turbine under the influence of plasma actuation. Overall performance improvements were based on changes between the final actuated and initial baseline results. A remarkable result of this investigation was that a net turbine power increase of 10% was measured. This was achieved by systematically reducing plasma pulsation duty cycles as well as the plasma initiation and termination angles. Nevertheless, it was determined that further performance increases could be achieved by changing the actuator's dielectric material, increasing the turbine radius and developing a method for control of dynamic stall on both the upwind (inboard of the blades) and downwind (outboard of the blades) halves of the turbine azimuth. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
C. E. D. Riboldi  S. Cacciola 《风能》2017,20(12):1955-1969
Two‐bladed wind turbines have regained the attention of the community thanks to the advantages in manufacturing cost provided by the lower number of blades and the ease of implementation of effective passive systems for load reduction (ie, teetering pin). Considering both teetering and nonteetering architectures, the dynamics of 2‐bladed turbines is different from that of 3‐bladed machines especially in terms of how multiples of the rotor frequencies in blade signals are translated on the fixed system. Such characteristics have hampered the adoption of active control laws for load mitigation based on individual pitch control, extensively studied for 3‐bladed turbines. A basic element for control development allowing to capture the essence of the relationship between signals on the blades and the fixed system on 2‐bladed turbines–represented by the Coleman transformation for 3‐bladed turbines–has not been identified yet. The present paper tries to fill the gap, presenting an extended transformation–called multiblade multilag–applicable to turbines with an arbitrary number of blades, providing a systematic way to link rotor signals to fixed system signals, thus allowing the application of control algorithms for individual pitch control developed for 3‐bladed turbines to the 2‐bladed case. The paper addresses the problem first at a theoretical level, and subsequently providing applicative results from simulations on virtual models of teetering and nonteetering 2‐bladed turbines. The proposed transformation algorithm and control laws allow to effectively reduce some relevant loads and motions respectively in the nonteetering and teetering scenarios, through a cyclic pitch input.  相似文献   

19.
The hydrodynamic forces imparted on a tidal turbine rotor, whilst causing it to rotate and hence generate power, will also cause the blades to deform. This deformation will affect the turbine's performance if not included in the early design phase and could lead to a decrease in power output and a reduction in operational life. Conversely, designing blades to allow them to deform slightly may reduce localised stress and therefore prolong the life of the blades and allow the blades to deform in to their optimum operational state. The aim of this paper is to better understand the kinetic energy extraction by varying the material modulus of a turbine blade. Shaft torque/power, blade tip displacement, and axial thrust results are presented for 2, 3 and 4 bladed rotor configurations at peak power extraction. For the rotor design studied the FSI model data show that there is a low sensitivity to blade deformation for the 2, 3 and 4 bladed rotors. However, the results reveal that the 3 bladed rotor displayed maximum hydrodynamic performance as a rigid structure which then decreased as the blade deformed. The 2 and 4 bladed rotor configurations elucidated a slight increase in hydrodynamic performance with deflection.  相似文献   

20.
While tilting and coning of the rotor are well established on upwind turbines, this is not so for downwind turbines. Therefore, a detailed experimental assessment of the effects of rotor tilt and rotor cone on the fluctuations of torque and thrust on downwind turbines is conducted, and compared to upwind turbines. It is shown that on downwind turbines, the effects of tilting and coning are opposite. As the tilt angle is increased, the fluctuations decrease on downwind turbines. On the other hand, increasing the cone angle increases the fluctuations. While both tilting and coning increase the blade-tower clearance, thereby reducing the adverse effect of the tower wake, the impact of changing the tilt or cone angles must also be assessed in the context of changes in the radial migration of flow across the blade span. On downwind turbines coning enhances the radially outboard flow migration; the increased azimuthal variation of radial migration results in a degraded aerodynamic performance. However, tilted downwind turbines combine the benefits of increased tower-blade clearances with a reduced radial flow migration. Nevertheless, as coning improves yaw stability, downwind turbines with relatively large tilt angle and moderate cone angle are preferred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号