首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
在矩形翼的基础上,提出一种新型的八边形翼纵向涡发生器.在矩形通道内,通过试验比较了矩形翼和八边形翼纵向涡发生器的流动与传热特性.分别在Re相同和阻力损失相同的条件下,分析了不同纵向涡发生器的强化传热效果.结果表明:与矩形翼相比,八边形翼纵向涡发生器的强化传热效果更好,而阻力系数没有明显增加;在阻力损失相同的条件下,矩形翼和八边形翼纵向涡发生器的传热增强率小于在Re相同时的传热增强率.  相似文献   

2.
纵向涡强化竖直平板自然对流换热的实验研究   总被引:3,自引:1,他引:3  
对纵向涡强化竖直平板自然对流换热进行了实验研究。结果表明,在一定的Rayleigh数范围内,直角三角翼纵向涡发生器的攻角、翼高、翼宽等几何参数是影响强化换热的主要因素。存在最佳攻角;宽高比一定时,翼高和翼宽的变化会影响换热的效果。发现在直角三角翼阵列中前排直角三角翼产生的纵向涡可以强化后排直角三角翼纵向涡的换热。将直角三角翼与矩形低肋换热表面的性能作了对比性实验,在其他条件相同的情况下,直角三角翼强化换热的效果优于矩形低肋。  相似文献   

3.
纵向涡强化换热的优化设计及机理分析   总被引:1,自引:0,他引:1  
对带纵向涡发生器的椭圆管翅片换热器空气侧表面的换热和流动特性进行了三维数值模拟.深入分析了纵向涡对流场和温度场的影响,并通过场协同原理揭示了纵向涡强化换热的根本机理,即减小了速度和温度梯度之间的夹角,改善了速度场和温度场的协同性.在此基础上,对纵向涡发生器的布置位置(上游布置和下游布置)和纵向涡发生器的攻角α(15°,30°,45°,60°)进行了优化设计.结果表明:当纵向涡发生器布置于换热管下游时,具有更好的强化换热能力;在纵向涡发生器采用下游布置的前提下,当纵向涡发生器的攻角α=30°时,具有最佳的强化换热能力.  相似文献   

4.
将纵向涡强化换热技术应用于矩形管槽,研究以水为换热介质在过渡流状态下的换热效果。实验结果表明有纵向涡发生器的换热效果明显优于无纵向涡发生器的情况。利用PHEON ICS计算软件对实验进行数值模拟,模拟值与实验值符合较好。在此基础上,改变纵向涡的翼高和形状来模拟,发现两者均为换热影响的因素,相比之下,高宽比为0.4纵向涡发生器的换热效果比高宽比为0.5和0.6的要好。而采用相同高宽的矩形翼时,N u高于三角翼,但其换热性能指标却低于直角三角翼。  相似文献   

5.
利用三维数值模拟的方法对带有3种异形纵向涡发生器的H型翅片椭圆管换热器的空气侧流动传热特性进行研究。基于H型翅片椭圆管束,讨论了在不同雷诺数下,纵向涡发生器的摆放位置、摆放攻角和形状对空气侧流动传热的影响。研究表明:纵向涡发生器能够将高能量的流体引向流速较低的壁面区域,使冷热流体之间的混合加剧,增强流体的湍流动能,进而达到强化传热的效果;与无纵向涡发生器的管束相比,带纵向涡发生器管束的传热效果有明显的提高;当纵向涡发生器后置时,换热器的传热效果最优;在雷诺数相同,攻角为30°时,流体的传热性能和阻力特性均达到最优;相同攻角摆放时,椭圆角矩形发生器的传热性能和阻力因子均优于其他两种形式的发生器。研究结果为烟气余热回收系统换热器传热性能强化提供理论依据。  相似文献   

6.
对安装渐缩式纵向涡发生器与椭圆支柱组合的矩形通道内脉动流动换热性能进行了非稳态三维数值模拟研究,计算考察了不同Re、脉动频率ω以及振幅A对通道内强化传热和压力损失的影响。研究结果表明:在脉动流动的影响下纵向涡发生器的传热能力得到了强化。随着脉动频率ω和脉动振幅A的增加,矩形通道内整体传热能力的强化效果增强;随着Re的增大,强化效果逐渐减小。随着脉动频率ω和脉动振幅A的增大,矩形通道内E_f的波动振幅增加;随着Re的增大,E_f的波动振幅减小。  相似文献   

7.
为增强微通道的流动和换热特性,对微通道结合纵向涡发生器进行了数值模拟,分析不同雷诺数下纵向涡发生器的长度、横向间隙对微通道流动与换热性能指标的影响。结果表明:在进口速度为0.5~2 m/s时,雷诺数的增加会引起微通道内的换热性能增强,摩擦因子减小及综合传热性减小;涡发生器长度对换热影响较小,但增加涡发生器长度会引起阻力增加,横向间距对阻力影响较小,但增加横向间距会引起换热性能提高;涡发生器长度为0.30~0.40 mm时综合因子为0.94~1.21,横向间隙为0.1~0.5 mm时综合因子为0.88~1.17;纵向涡发生器长度为0.3 mm和横向间隙为0.5 mm时,有利于综合传热性能的提高。在低雷诺数时微通道结合纵向涡发生器的强化传热和综合传热因子要比高雷诺数时好。  相似文献   

8.
采用三维数值模拟的方法研究了在片式散热器一组通道内设矩形涡流发生器(rectangualr vortex generator,RVGs)时对油侧的传热性能影响。研究了相同入口条件(层流)和考虑重力作用的条件下,纵向涡发生器的宽度、高度、攻角和纵向间距等几何因素对竖直通道传热和压降的影响。结果表明:纵向涡发生器产生的涡旋导致边界层分离,传热效果得到强化;改变涡发生器的宽度和高度对传热的影响趋势相似;当几何条件相同下攻角为30°时整体强化传热效果最佳;随着纵向间距的增加,传热的强化效果先降低再提高,最后又降低;最佳纵向间距为160 mm。  相似文献   

9.
多排纵向涡发生器强化竖直平板自然对流换热的实验研究   总被引:1,自引:0,他引:1  
对多排纵向涡发生器对竖直平板自然对流的强化效果进行了研究。结果表明,在一定Rayleigh数范围内,直角三角翼纵向涡发生器的翼高、翼宽以及多排布置的阵列方式是影响强化换热的主要因素。在高宽比一定的情况下,存在最佳翼高。发现多排布置时LVG阵列方式的不同会影响换热效果;且要使得整个板的强化换热效果达到最佳,应选择沿竖直发热板长度方向间隔的布置多排LVG,并适当拉大间隔距离。  相似文献   

10.
以NACA0018为基准翼型,采用Fluent数值模拟的方法,对比研究了襟翼相对长度和翼缝相对宽度对翼型流场结构及升、阻力特性的影响;分别选取襟翼相对长度分别为0.2、0.3和0.4和翼缝相对宽度分别为1.0%、1.5%以及2.0%,着重分析翼缝相对宽度对翼型气动性能的影响。数值结果表明,由于襟翼对翼型周围主涡发展和变化的影响,不仅改善了翼型的失速特性,同时也提高了翼型的气动性能。襟翼翼型的失速攻角在此次研究范围内均大于基准翼型,在攻角小于失速攻角时,襟翼翼型的升力系数均小于基准翼型,阻力系数均高于基准翼型,但升力系数的最大值均高于基准翼型;随着襟翼相对长度增大,翼型临界攻角逐渐减小;在攻角接近翼型失速攻角时,升力系数先增大后减小;襟翼长度相同时,随着翼缝相对宽度的增大,升力系数逐渐减小。在翼缝流体入口端,主翼末端存在一个涡,随着翼缝相对宽度增大,该涡流范围逐渐扩大;在襟翼前端有局部的压力升高,随着翼缝相对宽度增大,该局部高压范围扩大。  相似文献   

11.
为了研究不同工况情况下冲孔矩形翼涡流发生器的纳米氧化镁颗粒的污垢特性,通过实验对比了冲孔矩形翼涡流发生器和未冲孔矩形翼涡流发生器的污垢特性,探讨了水浴温度、工质质量浓度及工质流速对颗粒污垢的影响。实验结果表明:相同工况下,冲孔矩形翼涡流发生器较未冲孔涡流发生器具有更优的抑垢效果;随着水浴温度的升高,污垢热阻渐近值增加,而且结垢速率也增大;污垢热阻渐近值随着工质质量浓度的增加而增大,结垢速率有略微提升;随着工质流速的增大,污垢热阻渐近值和结垢速率均降低。  相似文献   

12.
A modified rectangular longitudinal vortex generator (LVG) obtained by cutting off the four corners of a rectangular wing is presented. Fluid flow and heat transfer characteristics of this LVG mounted in rectangular channel are experimentally investigated and compared with those of original rectangular LVG. Results show that the modified rectangular wing pairs (MRWPs) have better flow and heat transfer characteristics than those of rectangular wing pair (RWP). Near the positions of z = ±40 mm from the centerline of the heater plate, the local heat transfer is enhanced due to the strong longitudinal vortices generated by the presence of the LVGs. The down-sweep of the longitudinal vortices is beneficial to the heat transfer enhancement. The distance from the core of the main vortices of MRWP1 to the heater wall is slightly lower than those of RWP, and hence MRWP1 has a comparably better heat transfer characteristic.  相似文献   

13.
The present numerical analysis pertains to the heat transfer enhancement in a plate‐fin heat exchanger employing triangular shaped fins with a rectangular wing vortex generator on its slant surfaces. The study has been carried out for three different angles of attack of the wing, i.e., 15°, 20° and 26°. The aspect ratio of the wing is not varied with its angle of attack. The flow considered herein is laminar, incompressible, and viscous with the Reynolds number not exceeding 200. The pressure and the velocity components are obtained by solving the continuity and the Navier– Stokes equations by the Marker and Cell method. The present analysis reveals that the use of a rectangular wing vortex generator at an attack angle of 26° results in about a 35% increase in the combined spanwise average Nusselt number as compared to the plate‐triangular fin heat exchanger without any vortex generator. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20285  相似文献   

14.
A novel combined longitudinal vortex generator (LVG), comprising a rectangular wing mounted with an accessory rectangular wing, is developed and the turbulent flow and heat transfer characteristics are numerically analyzed. The influences of six main parameters of the combined rectangular winglet pair (CRWP) on heat transfer enhancement and fluid flow resistance characteristics in a rectangular channel are examined. The parameters include the location of accessory wing on the main wing and geometric sizes of the accessory wing. The Reynolds number range is from 2000 to 16,000. The numerical results show that in the range of the present study, the increase of the six parameters can result in the increase of heat transfer and pressure drop. Specially, the pressure drop decreases at large value of the distance of accessory wing from the channel bottom. In comparison with RWP, the CRWP generates vortices with larger area and lower core. Furthermore, the accessory wings generate vortices that swirl downward the channel bottom and disturb the boundary layer growth more effectively. Hence the heat transfer is enhanced. The numerical result for the Nusselt number of the channel agrees well with the experimental result, indicating the reliability of the present numerical predictions.  相似文献   

15.
纵向涡发生器传热强化的研究进展   总被引:1,自引:0,他引:1  
黄军  王令  王秋旺  黄彦平 《动力工程》2007,27(2):211-217
通过对纵向涡发生器研究进展的回顾,可以看出以往的研究主要集中在纵向涡发生器对气体介质的传热强化上,而对液体介质的传热强化作用的研究较少.运用场协同原理对纵向涡的产生和传热强化作用机理作出了初步解释.下一步的研究工作首先应对纵向涡发生器的几何尺寸进一步优化,其次针对矩形窄通道内液体的强化传热进行深入研究,最后以水为介质时,针对纵向涡发生器对窄间隙矩形通道内临界热流密度的影响机理进行研究.  相似文献   

16.
This study presents numerical computation results on laminar convection heat transfer in a rectangular channel with a pair of rectangular winglets longitudinal vortex generator punched out from the lower wall of the channel. The effect of the punched holes and the thickness of the rectangular winglet pair to the fluid flow and heat transfer are numerically studied. It is found that the case with punched holes has more heat transfer enhancement in the region near to the vortex generator and lower average flow frictional coefficient compared with the case without punched holes. The thickness of rectangular winglet can cause less heat transfer enhancement in the region near to the vortex generator and almost has no significant effect on the total pressure drop of the channel. The effects of Reynolds number (from 800 to 3000), the attack angle of vortex generator (15°, 30°, 45°, 60° and 90°) were examined. The numerical results were analyzed from the viewpoint of field synergy principle. It was found that the essence of heat transfer enhancement by longitudinal vortex can be explained very well by the field synergy principle, i.e., when the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient, the heat transfer in the present channels will be enhanced. Longitudinal vortices (LVs) improve the synergy between velocity and temperature field not only in the region near LVG but also in the large downstream region of longitudinal vortex generator. So LVs enable to enhance the global heat transfer of channel. Transverse vortices (TVs) only improve the synergy in the region near VG. So TVs can only enhance the local heat transfer of channel.  相似文献   

17.
3-D numerical simulations were presented for laminar flow and heat transfer characteristics in a rectangular channel with vortex generators. The effects of Reynolds number (from 800 to 3 000), the attack angle of vortex generator (from 15° to 90°) and the shape of vortex generator were examined. The numerical results were analyzed based on the field synergy principle. It is found that the inherent mechanism of the heat transfer enhancement by longitudinal vortex can be explained by the field synergy principle, that is, the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient. The longitudinal vortex improves the field synergy of the large downstream region of longitudinal vortex generator (LVG) and the region near (LVG); however, transverse vortex only improves the synergy of the region near vortex generator. Thus, longitudinal vortex can enhance the integral heat transfer of the flow field, while transverse vortex can only enhance the local heat transfer. The synergy angle decreases with the increase of Reynolds number for the channel with LVG to differ from the result obtained from the plain channel, and the triangle winglet performs better than the rectanglar one under the same surface area condition.  相似文献   

18.
This study presents numerical computation results on laminar convection heat transfer in a plate‐fin heat exchanger, with triangular fins between the plates of a plate‐fin heat exchanger. The rectangular winglet type vortex generator is mounted on these triangular fins. The performance of the vortex generator is evaluated for varying angles of attack of the winglet i.e., 20, 26, and 37° and Reynolds number 100, 150, and 200. The computations are also performed by varying the geometrical size and location of the winglet. The complete Navier–Stokes equation and the energy equation are solved by the (Marker and Cell) MAC algorithm using the staggered grid arrangement. The constant wall temperature thermal boundary conditions are considered. Air is taken as the working fluid. The heat transfer enhancement is seen by introducing the vortex generator. Numerical results show that the average Nusselt number increases with an increase in the angle of attack and Reynolds number. For the same area of the LVG, the increase in length of the LVG brings more heat transfer enhancement than increasing the height. The increase in heat transfer comes with a moderate pressure drop penalty. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley Online Library ( wileyonlinelibrary.com ). DOI 10.1002/htj.20318  相似文献   

19.
3-D numerical simulations were presented for laminar flow and heat transfer characteristics in a rectangular channel with vortex generators. The effects of Reynolds number (from 800 to 3 000), the attack angle of vortex generator (from 15° to 90°) and the shape of vortex generator were examined. The numerical results were analyzed based on the field synergy principle. It is found that the inherent mechanism of the heat transfer enhancement by longitudinal vortex can be explained by the field synergy principle, that is, the second flow generated by vortex generators results in the reduction of the intersection angle between the velocity and fluid temperature gradient. The longitudinal vortex improves the field synergy of the large downstream region of longitudinal vortex generator (LVG) and the region near (LVG); however, transverse vortex only improves the synergy of the region near vortex generator. Thus, longitudinal vortex can enhance the integral heat transfer of the flow field, while transverse vortex can only enhance the local heat transfer. The synergy angle decreases with the increase of Reynolds number for the channel with LVG to differ from the result obtained from the plain channel, and the triangle winglet performs better than the rectanglar one under the same surface area condition. __________ Translated from Journal of Xi’an Jiaotong University, 2006, 40(9): 996–1000 [译自: 西安交通大学学报]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号