首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The need for rapid, highly sensitive, and versatile diagnostic tests for viral pathogens spans from human and veterinary medicine to bioterrorism prevention. As an approach to meet these demands, a diagnostic test employing monoclonal antibodies (mAbs) for the selective extraction of viral pathogens from a sample in a chip-scale, sandwich immunoassay format has been developed using surface-enhanced Raman scattering (SERS) as a readout method. The strengths of SERS-based detection include its inherent high sensitivity and facility for multiplexing. The capability of this approach is demonstrated by the capture of feline calicivirus (FCV) from cell culture media that is exposed to a gold substrate modified with a covalently immobilized layer of anti-FCV mAbs. The surface-bound FCVs are subsequently coupled with an extrinsic Raman label (ERL) for identification and quantification. The ERLs consist of 60-nm gold nanoparticles coated first with a layer of Raman reporter molecules and then a layer of mAbs. The Raman reporter molecule is strategically designed to chemisorb as a thiolate adlayer on the gold nanoparticle, to provide a strong and unique spectral signature, and to covalently link a layer of mAbs to the gold nanoparticle. The last feature provides a means to selectively tag substrate-bound FCV. This paper describes the development of the assay, which uses cell culture media as a sample matrix and has a linear dynamic range of 1 x 10(6)-2.5 x 10(8) viruses/mL and a limit of detection of 1 x 10(6) viruses/mL. These results reflect the findings from a detailed series of investigations on the effects of several experimental parameters (e.g., salt concentration, ERL binding buffer, and sample agitation), all of which were aimed at minimizing nonspecific binding and maximizing FCV binding efficiency. The performance of the assay is correlated with the number of captured FCV, determined by atomic force microscopy, as a means of method validation.  相似文献   

2.
3.
Dong J  Chen Q  Rong C  Li D  Rao Y 《Analytical chemistry》2011,83(16):6191-6195
To obtain depth profiles of surface-enhanced Raman scattering (SERS) information in living systems, a SERS-active needle was structured by acupuncture needles, gold nanoshells (GNSs), and polystyrene, which were used as carriers, SERS-active elements to be absorbed on the carriers, and coatings to protect the absorbed GNSs from being erased during insertion, respectively. The SERS-active needle is minimally invasive for entering and exiting the body. The interspaces between the GNSs became vessels to collect diffused fluids at different depths after a SERS-active needle was inserted into an agarose gel, and the SERS intensity profile on the SERS-active needle coincided with the concentration profile of Nile Blue A (NBA) in the gel. SERS detection in vitro avoided the signal attenuation in gels, and the SERS detection at different spots of the SERS-active needle provided a depth profile of the NBA molecule in the gel. In vivo experiments of NBA and 6-mercaptopurine confirmed that the SERS-active needle could collect fluids in living systems easily with minimal invasion and provide information about depth profiles of target molecules in tissues.  相似文献   

4.
Han XX  Jia HY  Wang YF  Lu ZC  Wang CX  Xu WQ  Zhao B  Ozaki Y 《Analytical chemistry》2008,80(8):2799-2804
We have developed a new analytical procedure for label-free protein detection designated "Western SERS", consisting of protein electrophoresis, Western blot, colloidal silver staining, and surface-enhanced Raman scattering (SERS) detection. A novel method of silver staining for Western blot that uses a silver colloid, an excellent SERS-active substrate, is first proposed in the present study. During the process of silver staining, interactions between proteins and silver nanoparticles result in the emergence of SERS of proteins. In the present study, we use myoglobin (Mb) and bovine serum albumin (BSA) as model proteins. From different protein bands on a nitrocellulose (NC) membrane, we have observed surface-enhanced resonance Raman scattering (SERRS) spectra of Mb and SERS spectra of BSA. The proposed technique offers dual advantages of simplicity and high sensitivity. On one hand, after the colloidal silver staining, we can detect label-free multi-proteins directly on a NC membrane without digestion, extraction, and other pretreatments. On the other hand, the detection limit of the Western SERS is almost consistent with the detection limit of colloidal silver staining, and the SERRS detection limit of Mb is found to be 4 ng/band. This analytical method, which combines the technique of protein separation with SERS, may be a powerful protocol for label-free protein detection in proteomic research.  相似文献   

5.
Li M  Zhang J  Suri S  Sooter LJ  Ma D  Wu N 《Analytical chemistry》2012,84(6):2837-2842
A simple, ultrasensitive, highly selective, and reagent-free aptamer-based biosensor has been developed for quantitative detection of adenosine triphosphate (ATP) using surface-enhanced Raman scattering (SERS). The sensor contains a SERS probe made of gold nanostar@Raman label@SiO(2) core-shell nanoparticles in which the Raman label (malachite green isothiocyanate, MGITC) molecules are sandwiched between a gold nanostar core and a thin silica shell. Such a SERS probe brings enhanced signal and low background fluorescence, shows good water-solubility and stability, and exhibits no sign of photobleaching. The aptamer labeled with the SERS probe is designed to hybridize with the cDNA on a gold film to form a rigid duplex DNA. In the presence of ATP, the interaction between ATP and the aptamer results in the dissociation of the duplex DNA structure and thereby removal of the SERS probe from the gold film, reducing the Raman signal. The response of the SERS biosensor varies linearly with the logarithmic ATP concentration up to 2.0 nM with a limit of detection of 12.4 pM. Our work has provided an effective method for detection of small molecules with SERS.  相似文献   

6.
The Langmuir-Blodgett (LB) technique has been used to obtain spatially resolved surface-enhanced resonance Raman scattering (SERRS) spectra of single dye molecules dispersed in the matrix of a fatty acid. The experimental results presented here mimic the original electrochemical surface-enhanced Raman scattering (SERS) work where the background bulk water did not interfere with the detection of the SERS signal of molecules adsorbed onto the rough silver electrode. LB monolayers of the dye in fatty acid have been fabricated on silver island films with a concentration, in average, of one probe molecule per micrometer square. The properties of single-molecule spectroscopy were investigated using micro-Raman including mapping and global images. Blinking of the SERRS signal was also observed.  相似文献   

7.
Some points on how to improve the detection sensitivity of confocal Raman microscopy for the study of surface-enhanced Raman scattering (SERS) of transition-metal electrodes are discussed, including the careful design of the spectroelectrochemical cell, proper selection of the thickness of the solution layer, the binning of charge-coupled device (CCD) pixels, and appropriate setting of the notch filter. Various roughening methods for the Pt, Rh, Fe, Co, and Ni electrode surfaces have been introduced in order to obtain SERS-active surfaces. It has been shown that the appropriate roughening procedure and the optimizing performance of the confocal Raman microscope are the two most important factors to directly generate and observe SERS on net transition-metal electrodes.  相似文献   

8.
A simple and effective protocol for detections of protein-protein and protein-small molecule interactions has been developed. After interactions between proteins and their corresponding ligands, we employed colloidal silver staining for producing active substrates for surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF). Tetramethylrhodamine isothiocyanate (TRITC) and Atto610 were used for both Raman and fluorescent probes. We detected interactions between human IgG and TRITC-anti-human IgG, and those between avidin and Atto610-biotin by surface-enhanced resonance Raman scattering (SERRS) and SEF. The detection limits of the proposed SERRS-based method are comparable to those of the proposed SEF-based one, 0.9 pg/mL for anti-human IgG and 0.1 pg/mL for biotin. This protocol exploits several advantages of simplicity over other SERS and SEF-based related methods because of the protein staining-based strategy for silver nanoparticle assembling, high sensitivity from SERRS and SEF, and high stability in photostability comparing to fluorescence-based protein detections. Therefore, the proposed method for detection of protein-ligand interactions has great potential in high-sensitivity and high-throughput chip-based protein function determination.  相似文献   

9.
Liu J  White I  DeVoe DL 《Analytical chemistry》2011,83(6):2119-2124
The use of porous polymer monoliths functionalized with silver nanoparticles is introduced in this work for high-sensitivity surface-enhanced Raman scattering (SERS) detection. Preparation of the SERS detection elements is a simple process comprising the synthesis of a discrete polymer monolith section within a silica capillary, followed by physically trapping silver nanoparticle aggregates within the monolith matrix. A SERS detection limit of 220 fmol for Rhodamine 6G is demonstrated, with excellent signal stability over a 24 h period. The capability of the SERS-active monolith for label-free detection of biomolecules was demonstrated by measurements of bradykinin and cytochrome c. The SERS-active monoliths can be readily integrated into miniaturized micrototal-analysis systems for online and label-free detection for a variety of biosensing, bioanalytical, and biomedical applications.  相似文献   

10.
Han XX  Cai LJ  Guo J  Wang CX  Ruan WD  Han WY  Xu WQ  Zhao B  Ozaki Y 《Analytical chemistry》2008,80(8):3020-3024
By using fluorescein isothiocyanate (FITC) as a Raman probe, we have developed a simple and sensitive method for an immunoassay based on surface-enhanced resonance Raman scattering (SERRS). For the first time, a SERRS-based immunoassay on the bottom of a microtiter plate is reported. We have applied the main pretreatment method of enzyme-linked immunoabsorbent assay (ELISA) to the present study. In this method, SERRS spectra of FITC are measured after several continuous steps of antigen coating, blocking, antibody adding, and colloidal silver staining. Human immunoglobulin G (IgG) and FITC-antihuman IgG are used for the immunoreaction. The proposed method has several advantages for immunoassay. First, we can determine the concentration of antigens via the intensity of a SERRS signal of FITC molecules that are attached to antibodies without an enzyme reaction, and thus the process is simple and reagent saving. Second, one can obtain SERRS spectra of FITC directly from silver aggregates on the bottom of a microtiter plate without displacement. Third, by using SERRS of FITC, the present method is sensitive enough to detect antigens at the concentration of 0.2 ng/mL, which is comparable to ELISA. Results are presented to demonstrate that the proposed SERRS-based immunoassay may have great potential as a high-sensitivity and high-throughout immunoassay.  相似文献   

11.
Recently,surface-enhanced Raman scattering(SERS)has been successfully used in the non-invasive detection of bladder tumor(BCa).The internal standard method was ...  相似文献   

12.
A planar-film plasmonic antenna for surface-enhanced Raman scattering (SERS) with good emission directivity (divergence angle < 3°) was realized on a Kretschmann prism configuration with Raman-active analytes as emitters. The simulated results of finite-difference time-domain method show the emission efficiency, the directivity and the gain of the planar-film antenna were expected to be 50%, 300 and 22 dB, respectively. Angle-resolved spectroscopy was used to characterize its properties in SERS. The experimental results show that the SERS signal of analytes was remarkably enhanced when a laser excited this planar-film plasmonic antenna at the resonance angle. Meanwhile, the radiation of SERS was concentrated in a small region in space. The planar-film antenna with high gain coefficient can be a promising light harvesting and emitting device. The good emission directivity allows high collection efficiency. This advantage opens up interesting prospects in the applications for plasmon-enhanced spectroscopy and single-phonon detections.  相似文献   

13.
An immunoassay readout method based on surface-enhanced Raman scattering (SERS) is described. The method exploits the SERS-derived signal from reporter molecules that are coimmobilized with biospecific species on gold colloids. This concept is demonstrated in a dualanalyte sandwich assay, in which two different antibodies covalently bound to a solid substrate specifically capture two different antigens from an aqueous sample. The captured antigens in turn bind selectively to their corresponding detection antibodies. The detection antibodies are conjugated with gold colloids that are labeled with different Raman reporter molecules, which serve as extrinsic labels for each type of antibody. The presence of a specific antigen is established by the characteristic SERS spectrum of the reporter molecule. A near-infrared diode laser was used to excite efficiently the SERS signal while minimizing fluorescence interference. We show that, by using different labels with little spectral overlap, two different antigenic species can be detected simultaneously. The potential of this concept to function as a readout strategy for multiple analytes is briefly discussed.  相似文献   

14.
Surface-enhanced Raman spectroscopy (SERS) is a powerful novel analytical tool which integrates high levels of sensitivity for trace analysis of chemical and biomolecular species due to the massive enhancement of Raman signals by using nanometre-sized metal particles. However, SERS can be envisaged as an analytical tool only if substrates with strong, predictable and reproducible SERS enhancement can be produced. Here we have developed one simple Ar+ ions sputtering technology to prepare gold nano-cones array on silicon substrates as surface-enhanced Raman scattering (SERS)-active substrates. The tip of the gold cone-structures exhibited an extremely sharp curvature with an apex diameter of 20 nm and the interior apex angle of the nanocones was around 20 degrees. These samples were evaluated as potential SERS substrates using Rhodamine 6G molecules as molecule probe and exhibited SERS enhancement factor of greater than 10, originated from the localized electron field enhancement around the apex of cones and the surface plasmon coupling of periodic structures.  相似文献   

15.
Studies have shown that many adverse health effects are associated with human exposure to dietary or environmental estrogens. Therefore, the development of rapid and highly sensitive detection methods for estrogens is very important and necessary to maintain hormonal concentration below the safety limit. Herein, we demonstrate a simple and rapid approach to detect trace amounts of phenolic estrogen based on surface-enhanced resonance Raman scattering (SERRS). Because of a coupling reaction between diazonium ions and the phenolic estrogens, azo compounds are formed with strong SERRS activity, which allows phenolic estrogen recognition at subnanomolar levels in solution. The proposed protocol has multiplexing capability, because each SERRS fingerprint of the azo dyes specifically corresponds to the related estrogen. Moreover, it is universal and highly selective, not only for phenolic estrogens but also for other phenolic molecules, even in complex systems.  相似文献   

16.
17.
This paper reports on the characterization and preliminary comparison of gold nanoparticles of differing surface modification and shape when used as extrinsic Raman labels (ERLs) in high-sensitivity heterogeneous immunoassays based on surface enhanced Raman scattering (SERS). ERLs are gold nanoparticles coated with an adlayer of an intrinsically strong Raman scatterer, followed by a coating of a molecular recognition element (e.g., antibody). Three types of ERLs, all with a nominal size of approximately 30 nm, were fabricated by using spherical citrate-capped gold nanoparticles (sp-cit-Au NPs), spherical CTAB-capped gold nanoparticles (sp-CTAB-Au NPs), or cube-like CTAB-capped gold nanoparticles (cu-CTAB-Au NPs) as cores. The performance of these particles was assessed via a sandwich immunoassay for human IgG in phosphate buffered saline. The ERLs fabricated with sp-CTAB-Au NPs as cores proved to be more than 50 times more sensitive than those with sp-cit-Au NPs as cores; the same comparison showed that the ERLs with cu-CTAB-Au NPs as cores were close to 200 times more sensitive. Coupled with small differences in levels of nonspecific adsorption, these sensitivities translated to a limit of detection (LOD) of 94, 2.3, and 0.28 ng/mL, respectively, for the detection of human IgG in the case of sp-cit-Au NPs, sp-CTAB-Au NPs, and cu-CTAB-Au NPs. The LOD of the cu-CTAB-Au NPs is therefore approximately 340 times below that for the sp-cit-Au NPs. Potential applications of these labels to bioassays are briefly discussed.  相似文献   

18.
M Sun  C Qian  W Wu  W Yu  Y Wang  H Mao 《Nanotechnology》2012,23(38):385303
This paper reports a novel highly ordered tripetaloid structure array (TPSA) which performs very well as an active surface-enhanced Raman scattering (SERS) substrate. The TPSA is easily fabricated by anisotropic etching of a self-assembly silica-nanoparticle bilayer and a subsequent metal deposition step, with notable uniformity and reproducibility. Electromagnetic simulation indicates that the narrow inter-gaps and edge protrusions in the TPSA act as hot spots. In addition, the peak electromagnetic field intensity in the inter-gaps changes slightly and periodically as the polarization of the incident light varies from 0°?to 360°. SERS experiments show that the SERS enhancement factor (EF) of a Au-film-covered TPSA is 12 times higher than that of regular Au-film-over-nanoparticles, and not sensitive to the polarization of the incident light. The spatially averaged EF of the TPSA is as high as 5.7?×?10(6), and the local EF of its hot spots is much higher.  相似文献   

19.
A comparison is made of the quantitative detection of a labeled antibody by surface-enhanced resonance Raman scattering (SERRS) and by fluorescence using the same instrument with the same laser excitation source. The area under the curve for the fluorescence band is greater than for any single peak in the SERRS spectrum, but the broad fluorescence band is more difficult to discriminate from the background at low concentrations. Using the peak height of one SERRS band and the peak height at the fluorescence maximum, the detection limit for SERRS was lower (1.19 x 10-11 mol.dm-3) than that obtained using fluorescence (3.46 x 10-10 mol.dm-3). The SERRS detection limit is calculated for the concentration of the sample added, but compared to fluorescence, there is an additional dilution step due to the addition of the colloid and the extent of this dilution is dependent on assay format. For comparison with the detection limits found earlier with labeled oligonucleotides, SERRS was remeasured with a 10 s accumulation time, and the final concentration in the cuvette after colloid addition and before any adsorption to the silver was used to calculate a detection limit of 2.79 x 10-13 mol.dm-3. This is comparable to the detection limit found using a similar SERRS procedure for an oligonucleotide labeled with the same dye. This experiment is dependent on many parameters that could affect this result, including the nature of the SERRS substrate, the excitation wavelength, and the dye chosen. However, the result indicates that SERRS can give assay sensitivities comparable or better than fluorescence for quantitative direct assay determination, suggesting that the much greater potential for multiple analyte detection could be exploited.  相似文献   

20.
A disposable solid-phase extraction (SPE) membrane was developed for rapid removal and sensitive surface-enhanced Raman scattering (SERS) detection of antibiotics in water samples. The membrane was fabricated on commercially available SPE column by filtration of the activated carbon modified with silver nanoparticles (Ag NPs/AC). The prepared SPE membrane exhibited outstanding preconcentration ability due to the high adsorption properties of AC, and excellent ability to enhance Raman signal resulting from “hot spots” between the embedded Ag NPs, improving the sensitivity of SERS detection. A detection limit (LOD) of 5.0?×?10?11 and 1.6?×?10?10 M was achieved for rhodamine 6G and p-aminothiophenol. In addition, the membrane exhibited high reproducibility with spot-to-spot variation in SERS spectral intensity less than 15%. Based on the membrane, the qualitative and quantitative analysis of the antibiotics in aqueous solution was accomplished with the LOD at nM level, demonstrating the feasibility of the disposable SPE membrane for in situ rapid preconcentration and detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号