首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents the performance results for a sensible heat storage system. The system under study operates as an air source heat pump which stores the compressor heat of rejection as domestic hot water or hot water in a storage tank that can be used as a heat source for providing building heating. Although measurements were made to quantify space cooling, space heating, and domestic water heating, this paper emphasizes the space heating performance of the unit. The heat storage system was tested for different indoor and outdoor conditions to determine parameters such as heating charge rate, compressor power, and coefficient of performance (COP). The thermal storage tank was able to store a full charge of heat. The rate of increase of storage tank temperature increased with outdoor temperature. The heating rate during a charge test, best shown by the normalized rate plots, increased with evaporating temperature due to the increasing mass flow rate and refrigerant density. At higher indoor temperature during the discharge tests, the rate of decrease of storage tank temperature was slower. Also, the discharge heating rate decreased with time since the thermal storage tank temperature decreased as less thermal energy became available for use. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, a novel monovalent inverter-driven water-to-water heat pump with a desuperheater was developed. In this unique system, domestic hot water is produced at a constant temperature controlled by a variable flow rate and stored in a tank. The heat demand is constantly matched by the system through the use of an inverter-driven compressor, which eliminates the need for a buffer tank. Three heating configurations of the system were examined with respect to variable climate conditions and two space heating target temperatures: space heating (mode 1), domestic hot water production (mode 2) and a combination of both (mode 3). Mappings of the performance variables per frequency were constructed for mode 3. For the other modes, the highest COP was identified for each examined climate condition. The difference between modes 1 and 3 was less than 5% for every variable. The space heating target temperature had a strong influence on both modes, showing an average difference of 29% in the COP between 35 °C and 45 °C. Mode 2 exhibited a considerably reduced COP compared to the other modes, as well as the lowest refrigerant mass flow rate and highest compression ratio among the three modes. From the previous results and the examination of the compressor, the compression ratio presents itself as a key parameter that can help to increase the COP if maintained at low values. The results of this research could be applied to the design of a control methodology for monovalent heat pumps.  相似文献   

3.
X.Q. Kong  D. Zhang  Y. Li  Q.M. Yang 《Energy》2011,36(12):6830-6838
A direct-expansion solar-assisted heat pump water heater (DX-SAHPWH) is described, which can supply hot water for domestic use during the whole year. The system mainly employs a bare flat-plate collector/evaporator with a surface area of 4.2 m2, an electrical rotary-type hermetic compressor, a hot water tank with the volume of 150 L and a thermostatic expansion valve. R-22 is used as working fluid in the system. A simulation model based on lumped and distributed parameter approach is developed to predict the thermal performance of the system. Given the structure parameters, meteorological parameters, time step and final water temperature, the numerical model can output operational parameters, such as heat capacity, system COP and collector efficiency. Comparisons between the simulation results and the experimental measurements show that the model is able to give satisfactory predictions. The effect of various parameters, including solar radiation, ambient temperature, wind speed and compressor speed, has been analyzed on the thermal performance of the system.  相似文献   

4.
A novel indirect expansion solar-assisted multi-functional heat pump (IX-SAMHP) system which composes of the multi-functional heat pump system and solar thermal collecting system is proposed and studied in this paper. This system can fulfill space heating, space cooling and water heating with high energy efficiency by utilizing solar energy. For solar water heating mode and solar space heating mode, a dynamic model is presented and validated with the experimental results. The simulation results show good consistency with the experimental data, and the established model is able to predict the system performance at a reasonable accuracy (with the root mean square deviations less than 5%). On this basis, the performances of the IX-SAMHP system are investigated under different parametric conditions. For solar water heating mode, simultaneously operating the solar thermal collecting system and multi-functional heat pump system can be an energy efficiency method. With the solar irradiation rising from 0W/m2 to 800W/m2, the COP increases from 2.35 to 2.57. In solar space heating mode, the effect of the mass flow rate of water in evaporator is investigated. To balance the heating capacity and COP, the mass flow rate of water should be adjusted according to different temperature demands and heat load.  相似文献   

5.
Direct hot water production consumes about 4% of the total energy use in Hong Kong, and about 20% when considering only the domestic sector. For water heating the energy sources are mostly town gas, liquefied petroleum gas and electricity. The use of heat pump or solar water heating, particularly the solar-assisted heat pump options, is not popular. In this paper, the potential application of a unitary type direct-expansion solar-assisted heat pump (DX-SAHP) system was examined. A numerical model of the DX-SAHP system was first introduced. From the simulation results with the use of the Typical Meteorological Year (TMY) weather data of Hong Kong, the system was found achieving a year-average coefficient of performance (COP) of 6.46, which is much better than the conventional heat pump system performance. The potential use of DX-SAHP therefore deserves further evaluation.  相似文献   

6.
A simulation study of hybrid solar-geothermal heat pump system for residential applications using carbon dioxide was carried out under different operating conditions. The system consists of a solar unit (concentric evacuated tube solar collector and heat storage tank) and a CO2 heat pump unit (three double-pipe heat exchangers, electric expansion valve, and compressor). As a result, the differential of pressure ratio between the inlet and the outlet of the compressor increases by 19.9%, and the compressor work increases from 4.5 to 5.3 kW when the operating temperature of the heat pump rises from 40 °C to 48 °C. Besides, the pressure ratio of the compressor decreases from 3 to 2.5 when the ground temperature increases from 11 °C to 19 °C. The operating time of the heat pump is reduced by 5 h as the daily solar radiation increases. As the solar radiation increases from 1 to 20 MJ/m2, the collector heat rises by 48% and the maximum collector heat becomes 47.8 kWh. The heating load increases by 70% as the indoor design temperature increases from 18 °C to 26 °C. However, the solar fraction is reduced from 11.4% to 5.8% because of the increases of the heating load.  相似文献   

7.
Air-to-water heat pumps using CO2 as a natural refrigerant have been developed and commercialized. They are expected to contribute to energy saving in residential hot water supply. The objective of the research is to analyze the performance of a water heating system composed of a CO2 heat pump and a hot water storage tank by numerical simulation. In this paper, the system performance is analyzed under a daily change in a standardized hot water demand, and some features of the temperature distribution in the storage tank and the system performance criteria such as coefficient of performance, storage and system efficiencies, and volumes of stored and unused hot water are investigated. It turns out that the daily change in the hot water demand does not significantly affect the daily averages of the COP, and storage and system efficiencies, while it significantly affects not only the daily change in the volume of hot water unused after the tapping mode, but also that in the volume of hot water stored after the charging mode. The influence of the daily change in the hot water demand on the volumes of stored and unused hot water is clarified quantitatively.  相似文献   

8.
Y.W. Li  R.Z. Wang  J.Y. Wu  Y.X. Xu   《Applied Thermal Engineering》2007,27(17-18):2858-2868
A direct expansion solar assisted heat pump water heater (DX-SAHPWH) experimental set-up is introduced and analyzed. This DX-SAHPWH system mainly consists of 4.20 m2 direct expansion type collector/evaporator, R-22 rotary-type hermetic compressor with rated input power 0.75 kW, 150 L water tank with immersed 60 m serpentine copper coil and external balance type thermostatic expansion valve. The experimental research under typical spring climate in Shanghai showed that the COP of the DX-SAHPWH system can reach 6.61 when the average temperature of 150 L water is heated from 13.4 °C to 50.5 °C in 94 min with average ambient temperature 20.6 °C and average solar radiation intensity 955 W/m2. And the COP of the DX-SAHPWH system is 3.11 even if at a rainy night with average ambient temperature 17.1 °C. The seasonal average value of the COP and the collector efficiency was measured as 5.25 and 1.08, respectively. Through exergy analysis for each component of the DX-SAHPWH system, it can be calculated that the highest exergy loss occurs in the compressor, followed by collector/evaporator, condenser and expansion valve, respectively. Further more, some methods are suggested to improve the thermal performance of each component and the whole DX-SAHPWH system.  相似文献   

9.
Providing the heating system with coal in greenhouses causes harmful results in terms of carbon emissions. In this study, analyzes were performed to meet the electrical energy required for the heating system with a heat pump from a solar photovoltaic-hydrogen system. For floor area 25000 m2 where greenhouses the required energy is obtained directly from hydrogen without using a heat pump 3000 m2 solar panel area required. The use of a heat pump reduces energy needs but it is also not feasible for large greenhouses. For convenience, a solar photovoltaic-hydrogen-heat pump system analysis was also made for 1000 m2 floor area greenhouses and it is found that the 24 m2 solar panel area is adequate in terms of meeting energy demand. Using a solar-hydrogen-heat pump system reduces carbon emissions by 86.5 tons per 1000 m2 floor area greenhouse. Considering the hydrogen storage system becomes unfeasible. We normalized the greenhouse floor area to 1 m2 and proposed reference values for hydrogen to be produced in 1 h, storage, and PV area. In addition, an analysis was made for the use of hydrogen energy for greenhouses that do not require a heating system and only work with a water pump.  相似文献   

10.
Heat pumps have been spotlighted as efficient building energy systems because they have great potentials for energy reduction in building air conditioning and reducing CO2 emission. In this study, a multi-function heat pump which has the functions of heating, cooling, and hot water supply was designed and its performance was investigated according to operating modes. In the cooling-hot water mode, the capacity and COP were enhanced as compared to other modes because the waste heat from the outdoor heat exchanger was utilized as useful heat in the indoor heat exchanger. In the heating and hot water supply mode, the compressor speed should be increased to get appropriate heating and hot water capacities. For all operating modes, the system could be optimized by adjusting the superheat.  相似文献   

11.
《Applied Thermal Engineering》2007,27(5-6):1029-1035
This paper deals with the system optimization of air source heat pump water heater (ASHPWH), including calculating and testing. The ASHPWH system consists of a heat pump, a water tank and connecting pipes. Air energy is absorbed at the evaporator and pumped to storage tank via a Rankine cycle. The coil pipe/condenser releases condensing heat of the refrigerant to the water side. An ASHPWH using a rotary compressor heated the water from initial temperature to the set temperature (55 °C). The capillary tube length, the filling quantity of refrigerant, the condenser coil tube length and system matching are discussed accordingly. From the testing results, it could be seen that the system performance COP could be improved obviously.  相似文献   

12.
The paper describes the project for a Zero Energy House constructed at the Technical University of Denmark. The house is designed and constructed in such a way that it can be heated all winter without any “artificial” energy supply, the main source being solar energy. With energy conservation arrangements, such as high-insulated constructions (30–40 cm mineral wool insulation), movable insulation of the windows and heat recovery in the ventilating system, the total heat requirement for space heating is calculated to 2300 kWh per year. For a typical, well insulated, one-storied, one-family house built in Denmark, the corresponding heat requirement is 20,000 kWh. The solar heating system is dimensioned to cover the heat requirements and the hot water supply for the Zero Energy House during the whole year on the basis of the weather data in the “Reference Year”. The solar heating system consists of a 42 m2 flat-plate solar collector, a 30 m3 water storage tank (insulated with 60 cm of mineral wool), and a heat distribution system. A total heat balance is set up for the system and solved for each day of the “Reference Year”. Collected and accumulated solar energy in the system is about 7300 kWh per yr; 30 per cent of the collected energy is used for space heating, 30 per cent for hot water supply, and 40 per cent is heat loss from the accumulator tank. For the operation of the solar heating system, the pumps and valves need a conventional electric energy supply of 230 kWh per year (corresponding to 5 per cent of the useful solar energy).  相似文献   

13.
In this study, the compression heat pump system using wastewater, as a heat source, from hotel with sauna was designed and analyzed. This study was performed to investigate the feasibility of the wastewater use for heat pump as a heat source and to obtain engineering data for system design. This heat pump system uses off-peak electricity that is a cheap energy compared to fossil fuel in Korea. For this, the charging process of heat into the hot water storage tank is achieved only at night time (22:00–08:00). TRNSYS was used for the system simulation with some new components like the heat pump, which we create ourselves.As a result, it was forecasted that the yearly mean COP of heat pump is about 4.8 and heat pump can supply 100% of hot water load except weekend of winter season. The important thing that should be considered for the system design is to decrease the temperature difference between condenser and evaporator working fluids during the heat charging process by the heat pump. This heat pump system using wastewater from sauna, public bath, building, etc. can therefore be effectively applied not only for water heating but also space heating and cooling in regions like as Korea.  相似文献   

14.
Solar thermal driven cooling systems for residential applications are a promising alternative to electric compression chillers, although its market introduction still represents a challenge, mainly due to the higher investment costs. The most common system configuration is an absorption chiller driven by a solar thermal system, backed up by a secondary heating source, normally a gas boiler. Heat storage in the primary (solar) circuit is mandatory to stabilize and extend the operation of the chiller, whereas a cold storage tank is not so common.This paper deals with the selection of the most suitable configuration for residential cooling systems with solar energy. In Spain, where cooling needs are usually higher than heating needs, the interest of a reversible heat pump as auxiliary system and a secondary cooling storage are analyzed.A complete TRNSYS model has been developed to compare a configuration with just hot storage (of typical capacity 40 L/m2 of solar collector surface) and a configuration with both, hot and cool storages. The most suitable configuration is very sensible to the solar collector area. As the collector area increases, the advantages of a cool storage vanish. Increasing the collector area tends to increase the temperature of the hot storage, leading to higher thermal losses in both the collector and the tank. When the storage volume is concentrated in one tank, these effects are mitigated. The effect of other variables on the optimal configuration are also analyzed: collector efficiency curve, COP of the absorption chiller, storage size, and temperature set-points of the chillers.  相似文献   

15.
In this study, the performance of a solar heating system with a heat pump was investigated both experimentally and theoretically. The experimental results were obtained from November to April during the heating season. The experimentally obtained results are used to calculate the heat pump coefficient of performance (COP), seasonal heating performance, the fraction of annual load met by free energy, storage and collector efficiencies and total energy consumption of the systems during the heating season. The average seasonal heating performance values are 4.0 and 3.0 for series and parallel heat pump systems, respectively. A mathematical model was also developed for the analysis of the solar heating system. The model consists of dynamic and heat transfer relations concerning the fundamental components in the system such as solar collector, latent heat thermal energy storage tank, compressor, condenser, evaporator and meteorological data. Some model parameters of the system such as COP, theoretical collector numbers (Nc), collector efficiency, heating capacity, compressor power, and temperatures (T1, T2, T3, TT) in the storage tank were calculated by using the experimental results. It is concluded that the theoretical model agreed well with the experimental results.  相似文献   

16.
In this study, the performance of a mobile heat pump for an electric bus, which uses the wasted heat of electric devices for a heating and air source for a cooling, was evaluated. Both cooling and heating performances of the mobile heat pump were tested under various experimental conditions, and then optimized by varying the refrigerant charge and the compressor frequency. The cooling capacity at all compressor frequencies was over 23.0 kW, which is sufficient for the cooling loads of an electric bus. The heating COP decreased but the heating capacity increased with the rise of outdoor temperature and the compressor frequency. The heating COP was 2.4 at an outdoor temperature of 10.0 °C. The observed heating and cooling performance characteristics of the mobile heat pump means it could be used for cabin heating and air conditioning of an electric vehicle with a short driving range.  相似文献   

17.
Direct expansion solar-assisted heat pump (DX-SAHP) systems have been proposed as viable alternatives to conventional solar-assisted heat pump systems. This study proposes the use of two-stage DX-SAHP systems for high temperature applications in the range of 60–90 °C. The study investigates the capability of these systems of meeting loads with high temperature requirements. The thermal performance of the systems is analyzed for refrigerant R-134a, using a one-cover solar collector. Comparisons between the two-stage DX-SAHP and the single-stage DX-SAHP systems are performed and presented. A graphical procedure is illustrated and used for sizing the solar collector area and the heat pump compressor displacement capacity for the two DX-SAHP systems.  相似文献   

18.
针对太阳能-土壤源热泵复合系统在水箱直接供暖模式下运行,存在热泵机组频繁启停以及供暖负荷分配不合理的问题,提出一种基于BP神经网络的动态供暖策略。以沈阳某建筑为对象,设计太阳能-土壤源热泵复合系统,通过TRNSYS和Matlab软件进行仿真。通过与常规水箱直接供暖策略对比,该策略能在典型供暖日中将机组的启停次数从9次减少为2次,机组COP从3.90提高至4.02。在供暖负荷较大的供暖季中期,平均每天提高机组COP 2.37%。  相似文献   

19.
Air (reverse Brayton) cycle has promising features in cold climate heat pump applications. In this study, an air cycle heat pump water heater (ACHPWH) simulation model considering the off-design performance of components was developed and validated with experimental data from literature. With this model, the performance of ACHPWH was numerically compared with two typical vapor compression heat pump water heaters (VCHPWH) under two different heating schemes, namely instantaneous heating and recirculation heating. For instantaneous heating, the COP of ACHPWH is comparable to that of VCHPWH when supplying high temperature water or operating at low ambient temperature. A significant improvement on annual performance would be achieved as well if higher efficient compressor and expander were applied in ACHPWH system. For recirculation heating, although the COP gap got larger, ACHPWH would save plenty of heating time when operating at low ambient temperature.  相似文献   

20.
Thermal performance parameters for a solar-assisted heat pump (SAHP) drying system with underground thermal energy storage (TES) tank and heat recovery unit (HRU) are investigated in this study. The SAHP drying system is made up of a drying unit, a heat pump, flat plate solar collectors, an underground TES tank, and HRU. An analytical model is developed to obtain the performance parameters of the drying system by using the solution of heat transfer problem around the TES tank and energy expressions for other components of the drying system. These parameters are coefficient of performances for the heat pump (COP) and system (COPs), specific moisture evaporation rate (SMER), temperature of water in the TES tank, and energy fractions for energy charging and extraction from the system. A MATLAB program has been prepared using the expressions for the drying system. The obtained results for COP, COPs, and SMER are 5.55, 5.28, and 9.25, respectively, by using wheat mass flow rate of 100 kg h−1, Carnot efficiency of 40%, collector area of 100 m2, and TES tank volume of 300 m3 when the system attains periodic operation duration in fifth year onwards for 10 years of operation. Annual energy saving is 21.4% in comparison with the same system without using HRU for the same input data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号