首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The determination of organic trace gases in the ambient environment at the lower ppb level is demonstrated based on a novel technique combining sorption tube sampling on Molsieve and Carbosieve S-III, thermal desorption, and detection of the trace analyte by hollow waveguide Fourier transform infrared (HWG-FT-IR) spectroscopy. While ethene concentrations of approximately 5 ppm can be directly observed using HWG-FT-IR, enrichment factors of up to 5000 were achieved by sorption tube sampling and thermal desorption. Detection limits of approximately 1 ppb are reported. Efficient enrichment by the sampling tube is achieved due to the favorable internal volume ( approximately 0.4 cm(3) at a length of 470 mm) of the hollow waveguide serving as a miniaturized gas cell. This new method was validated for ethene by thermodesorption-cryofocusing-GC-FID as the reference method. Analytical performance has been compared for standard gas mixtures and for ethene measurements in urban air. Finally, ethene data from a sampling campaign at two alpine sites in Tyrol/Austria are presented.  相似文献   

2.
A helical sorbent microtrap consisting of a helical sorbent fixed inside a silicosteel capillary tube is presented. The main parameters that affect the safe sampling time of the helical sorbent microtrap in continuous sampling by a membrane and trap interface for on-line gas chromatographic monitoring of organic volatiles in gaseous samples are examined, taking into account the helical configuration of the sorbent, the presence of the membrane in system, and the properties of the analytes. Thermal desorption of analytes from the helical sorbent trap was also examined having regard to the influence of the turbulent flow generated by the helical sorbent in the heat transfer and the effect of thermal backward flow on the peak shape. The practical application of the helical sorbent microtrap in a membrane and trap interface was demonstrated by on-line gas chromatographic monitoring of four volatile organic compounds in the fume hood air and of volatile organic compounds from a diesel engine exhaust. The limit of detection was in the picogram per milliliter range, depending on the time of trapping and the parameters that affect the permeation through the membrane.  相似文献   

3.
Cavity ring-down spectroscopy is applied to the liquid phase by placing the target solution directly into the optical cavity. We demonstrate that solutions in the cavity can be stirred and more importantly monitored in a flow. We report a minimum detectable absorption of 10(-6) cm(-1) for a range of organic solvents. This detection limit corresponds to picomolar concentrations for strong absorbers.  相似文献   

4.
We have been exploring innovative technologies for elemental and hyperfine structure measurements using cavity ring-down spectroscopy (CRDS) combined with various plasma sources. A laboratory CRDS system utilizing a tunable dye laser is employed in this work to demonstrate the feasibility of the technology. An in-house fabricated sampling system is used to generate aerosols from solution samples and introduce the aerosols into the plasma source. The ring-down signals are monitored using a photomultiplier tube and recorded using a digital oscilloscope interfaced to a computer. Several microwave plasma discharge devices are tested for mercury CRDS measurement. Various discharge tubes have been designed and tested to reduce background interference and increase the sample path length while still controlling turbulence generated from the plasma gas flow. Significant background reduction has been achieved with the implementation of the newly designed tube-shaped plasma devices, which has resulted in a detection limit of 0.4 ng/mL for mercury with the plasma source CRDS. The calibration curves obtained in this work readily show that linearity over 2 orders of magnitude can be obtained with plasma-CRDS for mercury detection. In this work, the hyperfine structure of mercury at the experimental plasma temperatures is clearly identified. We expect that plasma source cavity ring-down spectroscopy will provide enhanced capabilities for elemental and isotopic measurements.  相似文献   

5.
Fiber-loop cavity ring-down spectroscopy (CRDS) is a highly sensitive spectroscopic absorption technique which has shown considerable promise for the analysis of small-volume liquid samples. We have developed a new light coupling method for fiber-loop CRDS, which overcomes two disadvantages of the technique: low efficiency light coupling into the cavity and high loss per pass. The coupler is based on a 45° reflective notch polished between 10 and 30 μm into the core of a large-core-diameter (365 μm) optical fiber, and allows for nearly 100% light coupling into the cavity, with a low loss per pass (<4%). The coupler has the additional advantage that the input and output light is spatially separated on opposite sides of the fiber. The detection sensitivity of a fiber-loop CRD spectrometer employing the new coupling method is established from ring-down measurements on aqueous rhodamine 6G (Rh6G) at 532 nm. The results are compared with data obtained using the same light source and detector, but a conventional bend-coupled small-core-diameter (50 μm) optical fiber loop. With our new coupler, a detection limit of 0.11 cm(-1) is found, which corresponds to detection of 0.93 μM Rh6G in a volume of only 19 nL. This is an improvement of over an order of magnitude on our bend-coupled small-core optical fiber results, in which a detection limit of 5.3 cm(-1) was found, corresponding to a detection of 43 μM Rh6G in a volume of 20 pL.  相似文献   

6.
We present a spectrometer for sensitive absorption measurements in liquids across broad spectral bandwidths. The spectrometer combines the unique spectral properties of incoherent supercontinuum light sources with the advantages of cavity ring-down spectroscopy, which is a self-calibrating technique. A custom-built avalanche photodiode array is used for detection, permitting the simultaneous measurement of ring-down times for up to 64 different spectral components at nanosecond temporal resolution. The minimum detectable absorption coefficient was measured to be 3.2 × 10(-6) cm(-1) Hz(-1/2) at 527 nm. We show that the spectrometer is capable of recording spectral differences in trace levels of blood before and after hemolysis.  相似文献   

7.
A thermal desorption equipment introducing volatile organic compounds (VOCs) into the gas chromatographic/ mass spectrometric system (GC/MS) with simultaneous sniffing (SNIFF) is a suitable method for identifying the volatile organic off-odor compounds formed during the extrusion coating process of low-density polyethylene. Fumes emitted during the extrusion coating process of three different plastic materials were collected at two different temperatures (285 and 315 degrees C) from an outgoing pipe and near an extruder. The VOCs of fumes were analyzed by drawing a known volume of air through the adsorbent tube filled with a solid adsorbent (Tenax GR). The air samples were analyzed by using a special thermal desorption device and GC/MS determination. The simultaneous sniffing was carried out to detect off-odors and to assist in the identification of those compounds that contribute to tainting and smelling. The amounts of off-odor carbonyl compounds and the total content of the volatile organic compounds were determined. The most odorous compounds were identified as carboxylic acids while the majority of the volatile compounds were hydrocarbons. The detection and quantification of carboxylic acids were based on the characteristic ions of their mass spectra. The higher the extrusion temperature the more odors were detected. An important observation was that the total concentration of volatiles was dependent not only on the extrusion temperature but also on the plastic material.  相似文献   

8.
The use of a flowing liquid-sheet jet in cavity ring-down absorption measurements is described. A mechanical gear pump was used to pump solvent at low pressure through a circular orifice. The resulting cylindrical jet of solvent was fired at a flat surface. A flat sheet of liquid was formed in a small portion of the resulting spray, which was sufficiently stable to be positioned at the Brewster angle in a linear ring-down cavity setup operated with a pulsed laser. The path length through a sheet-jet of ethylene glycol was measured to be 23.2 +/- 0.6 mum. Malachite Green dye was used as an analyte to demonstrate a linear dynamic range of 12.6 dB (73.9 nM to 1.34 microM). The limit of detection for the system was determined to be alpha LOD = 0.0162 cm(-1), or 71 nM (at epsilon = 9.975 x 10(4) M(-1) cm(-1), 628 nm, 3 sigma). The technique is shown to have promise for analytical and spectroscopic measurements, for example, in studies of gas-liquid interfaces.  相似文献   

9.
A capillary-dimension on-line sorption trap is used to preconcentrate organic vapors from large-volume air samples and inject the organic compounds into the separation column as a relatively narrow vapor plug. The multibed trap is made from a Co-Ni alloy for resistive heating during sample desorption and uses four different carbon-based adsorption materials that are graded from weakest to strongest in the direction of the sample gas flow during sample preconcentration. The flow direction then is reversed for sample injection. The multibed design and the flow direction reversal during thermal desorption prevents the higher-boiling-point compounds in the sample from reaching the strongest adsorbing material, from which they would be difficult to desorb as a sufficiently narrow vapor plug. A relatively high current pulse is used to rapidly achieve trap temperatures in the 200-400 degrees C temperature range, and a lower current is used to maintain the maximum temperature for several seconds in order to ensure injection of the entire trapped sample. A temperature of 350 degrees C is reached after degrees 1.5 s, and injection plug widths are typically in the range of 0.6-1.3 s. Plots of peak area versus sample collection time show excellent linearity and shot-to-shot relatively standard deviations of about +/- 5%. Performance data are presented for a mixture of 42 volatile compounds spanning a volatility range from n-C5 to n-C12. Data are presented for injection plug width and shape for both polar and nonpolar compounds. Decomposition of thermally labile compounds is observed for injection temperatures above 300 degrees C.  相似文献   

10.
For controlling of trap temperature, the relationship between electric resistance of the trap tube and temperature is used. As the electric resistance of the trap tube (20 cm long stainless steel tubing) was very small, such as ca. 0.040 ohm for -70 degrees C and ca. 0.064 ohm for +90 degrees C, it was estimated by using the value of voltage output at both ends of the trap tube when a direct current (5 A) was applied for 6.5 ms at every 100 ms on the trap. By using this temperature measurement, a cycle of trapping is shortened, especially at the process of desorption, because it is possible to set a large increasing rate of temperature, such as 20 degrees C/s. The present trapping system has faster temperature response compared to that with a thermocouple. This system was applied for the study of the releasing of ethanol and water vapors from the human finger, which was treated as follows: dipping in 10% ethanol aqueous solution for 1 min, followed by washing with water and then drying in the air. In this case, a cycle of trapping took 53 s, and the period of total analysis was only 3 min. The present system is an efficient tool for the study of the exhalation of organic vapors from human skin.  相似文献   

11.
Lamm LJ  Yang Y 《Analytical chemistry》2003,75(10):2237-2242
In this study, the off-line coupling of subcritical water extraction (SBWE) with subcritical water chromatography (SBWC) was achieved using a sorbent trap and thermal desorption. The sorbent trap was employed to collect the extracted analytes during subcritical water extraction. After the extraction, the trap was connected to the subcritical water chromatography system, and thermal desorption of the trapped analytes was performed before the SBWC run. The thermally desorbed analytes were then introduced into the subcritical water separation column and detected by a UV detector. Anilines and phenols were extracted from sand and analyzed using this off-line coupling technique. Subcritical water extraction of flavones from orange peel followed by subcritical water chromatographic separation was also investigated. The effects of water volume and extraction temperature on flavone recovery were determined. Because a sorbent trap was used to collect the extracted analytes, the sensitivity of this technique was greatly enhanced as compared to that of subcritical water extraction with solvent trapping. Since no organic solvent-water extractions were necessary prior to analysis, this technique eliminated any use of organic solvents in both extraction and chromatography processes.  相似文献   

12.
The on-line determination of volatile and semivolatile organic compounds (SVOCs) is reported using membrane inlet mass spectrometry with in-membrane preconcentration (IMP-MIMS). Semivolatile organic compounds in aqueous samples are preconcentrated in a flow-through silicone hollow-fiber membrane inlet held in a GC oven. The sample stream is replaced with air, and the SVOCs are thermally desorbed into the mass spectrometer by rapid heating of the membrane. The method is evaluated for the on-line determination of 4-fluorobenzoic acid, 3,5-difluorobenzoic acid, 2-chlorophenol, p-tert-butylphenol, and dimethyl sulfoxide (DMSO) in water. The selectivity of the IMP-MIMS technique for SVOCs in the presence of VOCs is demonstrated. Cryotrapping and a rapid gas chromatographic separation step were added between the membrane and the mass spectrometer ion source for the determination of SVOCs in complex mixtures. The procedure is demonstrated for the determination of dimethyl sulfoxide (DMSO) in equine urine, using internal standardization with DMSO-d6. Full-scan electron ionization (EI) mass spectrometric detection showed good linearity (R = 0.998) and RSDs, relative to the internal standard, of 2.2% for desorption only and 4.6% for desorption and cryotrapping.  相似文献   

13.
全球气候变化给人类生活带来的影响受到世界各国的普遍关注,温室气体是影响和改变全球气候的关键因素之一,限制和降低温室气体排放量成为人类发展的重要议题.温室气体大多都在10"(每百万个气体分子中所含该种气体分子的个数)级别,且气体分子结构差异大,因此传统方法很难获得较高的精度,而光腔衰荡光谱法是能解决该难题的关键技术之一....  相似文献   

14.
We demonstrate a method for measuring optical loss simultaneously at multiple wavelengths with cavity ring-down spectroscopy (CRD). Phase-shift CRD spectroscopy is used to obtain the absorption of a sample from the phase lag of intensity modulated light that is entering and exiting an optical cavity. We performed dual-wavelength detection by using two different laser light sources and frequency-division multiplexing. Each wavelength is modulated at a separate frequency, and a broadband detector records the total signal. This signal is then demodulated by lock-in amplifiers at the corresponding two frequencies allowing us to obtain the phase-shift and therefore the optical loss at several wavelengths simultaneously without the use of a dispersive element. In applying this method to fiber-loop cavity ring-down spectroscopy, we achieve detection at low micromolar concentrations in a 100 nL liquid volume. Measurements at two wavelengths (405 and 810 nm) were performed simultaneously on two dyes each absorbing at mainly one of the wavelengths. The respective concentrations could be quantified independently in pure samples as well as in mixtures. No crosstalk between the two channels was observed, and a minimal detectable absorbance of 0.02 cm(-1) was achieved at 405 nm.  相似文献   

15.
A high-resolution liquid-nitrogen-free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system was used to perform real-time measurement of acetaldehyde concentrations in human exhaled breath following ingestion of an alcoholic beverage. Acetaldehyde absorption features were measured near 5.79 mum (1727 cm(-1)) using a IV-VI semiconductor laser, a 100 m long path optical gas cell, and second- harmonic detection coupled with wavelength modulation. Acetaldehyde levels were measured with a minimum detection limit of 80 ppb for 5 s integration time. The variations in exhaled acetaldehyde levels over time were analyzed prior to and following ingestion of two different amounts of white wine. A method to calibrate acetaldehyde measurements internally using water vapor absorption lines was investigated to eliminate the need for system calibration with gas standards. The potential of a TDLAS system to be used as a noninvasive clinical tool for measurements of large volatile compounds with possible applications in cancer detection is demonstrated.  相似文献   

16.
潘金明  林鸿  冯晓娟  宦克为  张金涛 《计量学报》2020,41(12):1565-1569
CO分子是监测大气污染气体的优异示踪气体,要实现对CO分子实时监控就需要做到对气体浓度的精确快速测量。气体分子浓度测量可以利用测量吸收光谱和谱线线形强度得到,CO的(3←0)泛频谱带是吸收较弱的跃迁波段,利用以干空气为缓冲气体的200μmol/mol的CO混合物,基于稳频的光腔衰荡装置测量了在温度293K、压力13~93kPa下的CO分子R支3条跃迁谱线的吸收光谱。HTP(Hartmann-Tran profile)线形被用来获得这些谱线的线形强度,测量结果的相对标准不确定度优于1%,与国际HITRAN、HITEMP和GEISA光谱数据库比较,相对偏差小于4%。  相似文献   

17.
A simple, cost-effective analysis combining solventless extraction, thermal desorption, and determination of volatile organic compounds (VOCs) was developed and validated. A needle trap device (NTD) packed with the sorbent Carboxen1000 was used as a time-weighted average (TWA) diffusive sampler to collect target compounds by molecular diffusion and adsorption to the packed sorbent. This process can be described with derivations of Fick's first law of diffusion, which expresses the relation between the TWA concentrations to which the passive sampler is exposed and the mass of analytes adsorbed to the packed sorbent in the sampler. The effects of experimental factors such as temperature, pressure, humidity, and face velocity were taken into account in applying diffusive sampling under nonideal conditions. This study demonstrates that NTD is effective for air analysis of benzene, toluene, ethylbenzene, and o-xylene (BTEX), due to the good adsorption/desorption quality of Carboxen 1000 and to the special geometric shape of the needle with a small cross section avoiding the need for calibration. Storage tests showed good storage stability for BTEX. Verification of the theoretical model showed good agreement between theoretical and experimental sampling rates. Method validation done against NIOSH method 1501, SPME, and NTD active sampling revealed good agreement between those methods. Automated NTD sample introduction to a gas chromatograph facilitates the use of this technology for industrial hygiene applications.  相似文献   

18.
We have developed a novel optical setup which is based on a high finesse cavity and absorption laser spectroscopy in the near-IR spectral region. In pilot experiments, spectrally resolved absorption measurements of biomarkers in exhaled breath, such as methane and acetone, were carried out using cavity ring-down spectroscopy (CRDS). With a 172-cm-long cavity, an efficient optical path of ~?132 km was achieved. The CRDS technique is well suited for such measurements due to its high sensitivity and good spectral resolution. The detection limits for methane of ~?8 ppbv and acetone of ~?2.1 ppbv with spectral sampling of 0.005 cm?1 were achieved, which allowed to analyze multicomponent gas mixtures and to observe absorption peaks of 12CH4 and 13CH4. Further improvements of the technique have the potential to realize diagnostics of health conditions based on a multicomponent analysis of breath samples.  相似文献   

19.
We are exploring sensitive techniques for elemental measurements using cavity ring-down spectroscopy (CRDS) combined with a compact microwave plasma source as an atomic absorption cell. The research work marries the high sensitivity of CRDS with a low-power microwave plasma source to develop a new instrument that yields high sensitivity and capability for elemental measurements. CRDS can provide orders of magnitude improvement in sensitivity over conventional absorption techniques. Additional benefit is gained from a compact microwave plasma source that possesses the advantages of low power and low-plasma gas flow rate, which are of benefit for atomic absorption measurements. A laboratory CRDS system consisting of a tunable dye laser is used in this work for developing a scientific base and demonstrating the feasibility of the technique. A laboratory-designed and -built sampling system for solution sample introduction is used for testing. The ring-down signals are monitored using a photomultiplier tube and recorded using a digital oscilloscope interfaced to a computer. Lead is chosen as a typical element for the system optimization and characterization. The effects of baseline noise from the plasma source are reported. A detection limit of 0.8 ppb (10(-)(10)) is obtained with such a device.  相似文献   

20.
Snyder KL  Zare RN 《Analytical chemistry》2003,75(13):3086-3091
We have demonstrated the use of cavity ring-down spectroscopy (CRDS) as a detector for high performance liquid chromatography (HPLC). For this use, we have designed and implemented a Brewster's angle flow cell such that cavity ring-down spectroscopy can be performed on microliter volumes of liquids. The system exhibits a linear dynamic range of 3 orders of magnitude (30 nM to 30 microM quinalizarin at 470 nm) for static measurements and 2 orders of magnitude (0.5 microM to 50 microM) for HPLC measurements. For the static measurements, the baseline noise is 2.8 x 10(-6) AU rms and 1.0 x 10(-5) AU peak-to-peak, and for the HPLC separations, it is 3.2 x 10(-6) AU rms and 1.3 x 10(-5) AU peak-to-peak. The baseline noise is determined after the data are smoothed by an 11-point boxcar average. The peak areas detected from HPLC separations are reproducible to within 2-3%. The HPLC mass detection limit for a molecule with epsilon = 9 x 10(3) M(-1) cm(-1) in a 300-microm path length cell (illuminated volume, 0.5 microL) is reported as 2.5 x 10(-8) g/mL. These results were obtained using a simple pulsed CRDS system and are comparable to, if not better than, a high-quality commercial UV-vis absorption detector for the same path length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号