首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermoelectric properties of the tetradymite-type Bi2−xSbxTe2S solid solution (0 ≤ x ≤ 2) are reported for the temperature range 5-300 K. The properties of non-stoichiometric, Cl and Sn doped n- and p-type variants are reported as well. The Seebeck coefficients for these materials range from −170 to +270 μV K−1 while the resistivities range from those of semimetals, 2 mΩ cm, to semiconductors, >1000 mΩ cm. Thermal conductivities were low for most compositions, typically 1.5 W m−1 K−1. Nominally undoped Bi2Te2S shows the highest thermoelectric efficiency amongst the tested materials with a ZT = 0.26 at 300 K that decreased to 0.04 at 100 K. The crystal structure of Sb2Te2S, a novel tetradymite-type material, is also reported.  相似文献   

2.
Cu2O(SeO3) has been synthesized in supercritical hydrothermal conditions, using an externally heated steel reactor with coupled hydraulic pump for the application of high pressure. The compound crystallizes in the P213 cubic space group. The unit cell parameter is a = 9.930(1) Å with Z = 12. The crystal structure has been refined by the Rietveld method. The limit of thermal stability is, approximately, 490 °C. Above this temperature the compound decomposes to SeO2(g) and CuO(s). The IR spectrum shows the characteristic bands of the (SeO3)2− oxoanion. In the diffuse reflectance spectrum two intense absorptions characteristic of the Cu(II) cations in five-coordination are observed. The ESR spectra are isotropic from room temperature to 5 K, with g = 2.11(2). The thermal evolution of the intensity and line width of the signals suggest a ferromagnetic transition in the 50-45 K range. Magnetic measurements, at low temperatures, confirm the existence of a ferromagnetic transition with a critical temperature of 55 K.  相似文献   

3.
A survey of the subsolidus phase equilibria in the system Li2O-Nd2O3-Fe2O3 was made at subsolidus temperatures in the range 1000-1050 °C. A ternary phase was identified. The phase is centered on Li5Nd4FeO10, with a cubic lattice a = 11.9494 Å. The compound melts incongruently at 1105 °C. The magnetic susceptibility was measured in the temperature range 4-300 K. The compound is paramagnetic in the temperature range 150-300 K and follows the Curie-Weiss law. At about TN = 10 K, a long-range magnetic ordering is observed.  相似文献   

4.
The structural and magnetic properties of the perovskite Sr2MnSbO6 have been studied. Combining neutron and X-ray powder diffraction data, the temperature evolution of the structural parameters was investigated with the Rietveld method between 2 and 1000 K. The crystal structure is tetragonal (space group I4/m) within the temperature interval of 2-750 K and cubic (space group Fm-3m) above 750 K. Both octahedral B-site positions were found to be partially occupied by Mn and Sb, but with different Mn/Sb ratios. The magnetic susceptibilities showed irreversibility between field cooled and zero-field cooled (ZFC) conditions and spin glass like magnetic dynamics including aging and memory phenomena at temperatures below 30 K; all appearing well above a broad maximum at 13 K in the ZFC susceptibility curves. This suggests that the material reaches an unconventional spin-glass state at low temperatures, possibly arising from a competitive situation between the double exchange (ferromagnetism) and the super-exchange (antiferromagnetism). Neutron diffraction patterns showed no evidence of a long-range magnetic ordering at 2 K which is consistent with spin glass behavior. The factors governing the observed structural and magnetic properties of Sr2MnSbO6 are discussed and compared with those of other quaternary Mn- and Sb-containing perovskites. Graphs of the temperature of magnetic phase transitions as functions of the cation size were constructed and are discussed for the AB3+1/2B5+1/2O3 series with isomorphous substitution of B3+ and B5+ cations. Possible influence of the A-cation sublattice on magnetic properties is also shortly considered.  相似文献   

5.
Ceramic samples of La0.1Sr0.9−xDyxTiO3 (x = 0.01, 0.03, 0.07, 0.10) have been prepared by the solid-state reaction method. Characterization from the powder X-ray diffraction indicates that their crystal structure changes from cubic to tetragonal phase. Their electrical and thermal transport properties are measured in the temperature range of 300-1100 K. n-Type thermoelectric is obtained with large Seebeck coefficient. The figure of merit is markedly improved, due to relatively lower electrical resistivity and thermal conductivity by Dy doping effect. A much lower electrical resistivity of 0.8 mΩ cm at room temperature is obtained in La0.1Sr0.8Dy0.1TiO3, and with a relatively lower thermal conductivity of 2.5 W/m K at 1075 K. The maximum figure of merit reaches ∼0.36 at 1045 K for La0.1Sr0.83Dy0.07TiO3, which is the largest value among n-type oxide thermoelectric ceramics.  相似文献   

6.
Oxygen post-treatment effects on the electronic structure and electrical properties of MgO films grown on homoepitaxial single-crystalline (1 0 0) diamond have been studied. MgO films examined were deposited at room temperature (RT) using an electron beam evaporator and were subsequently either annealed at 573-773 K for 12 h in oxygen ambient or treated by O2 plasma for 10-40 min. RT resistivities remarkably increased after the O2 annealing and plasma treatment, indicating that the post treatments play an essential part on the formation and positioning of bandgap states. Cathodoluminescence (CL) spectra had a broad band feature in a wavelength region from 360 to 530 nm, which were decomposed to several peaks originating mainly from the oxygen-vacancy-related F and F+ centers and the interstitial vacancies of MgO film. A prominent rectifying behavior of I-V property was observed for a Au/MgO/p-diamond layered structure. Based on temperature dependences of the electrical properties in a temperature region from RT to 600 K, the electrical conduction mechanism in the MgO films is discussed in relation to polaron-related conduction as well as the ionic conduction.  相似文献   

7.
Highly oriented (1 0 0) NaxWO3 thin films were fabricated in the composition range 0.1 ≤ x ≤ 0.46 by pulsed laser deposition technique. The films showed transition from metallic to insulating behaviour at a critical composition between x = 0.15 and 0.2. The pseudo-cubic symmetry of NaxWO3 thin films across the transition region is desirable for understanding the composition controlled metal-insulator transition in the absence of any structural phase transformation. The electrical transport properties exhibited by these films across the transition regime were investigated. While the resistivity varied as T2 at low temperatures in the metallic regime, a variable range hopping conduction was observed for the insulating samples. For metallic compositions, a non-linear dependence of resistivity in temperature was also observed from 300 to 7 K, whose exponent varied with the composition of the film.  相似文献   

8.
The rubidium tungsten bronzes RbxWO3 have been prepared from Rb2CO3, WO3 and W powders using hybrid microwave method. The single hexagonal phase samples can be obtained as actual rubidium content x in the range of 0.21-0.33, and their lattice parameters a and c linearly drop and rise with the increase of rubidium content respectively. For samples with x = 0.14, 0.16, 0.18, the superconducting transition temperature Tc from resistivity measurements does not change with the rubidium content, while Tc from susceptibility measurements shows a decrease from 5.3 K for x = 0.14 to 4.8 K for x = 0.18. The charge density wave (CDW) transition appears in Rb0.21WO3, Rb0.23WO3 and Rb0.25WO3 at about 200-260 K. The CDW transition is most obvious in Rb0.23WO3 which shows the lowest degree of crystallization among the samples.  相似文献   

9.
Negative thermal expansion material, Y2W3O12 has been synthesized by the solid-state method and bulk thermal expansion of the material has been investigated from 300 to 1100 K. The material reversibly forms a trihydrate composition whose X-ray diffraction pattern can be indexed to an orthorhombic unit cell with a = 10.098(1) Å, b = 13.315(3) Å, c = 9.691(4) Å. The cell volume of the hydrated pattern is 7% smaller than the unhydrated cell volume. According to the dilatometric studies, the material shows a 3-6% increase in the linear strain at about 400 K, which can be attributed to the removal of water. Sintering the material at 1473 K leads to large grain size of >100 μm, which results in a large hysteresis in the bulk thermal expansion behavior. Hot pressing at 1273 K under a uniaxial pressure of 25 MPa results in a fine-grained (2-5 μm) ceramic. Glazing the ceramic prevents moisture pick up and a linear thermal expansion over the entire temperature range 1100-300 K and an average linear thermal expansion co-efficient of −9.65 × 10−6/K is observed. The effect of water on the thermal expansion behavior of this system is discussed.  相似文献   

10.
K2NiF4-type CaLnCoO4 (Ln = Sm and Gd) has been synthesized at 1173 or 1223 K in air using citric acid (CA) and ethylene glycol (EG). CaLnCoO4 (Ln = Sm and Gd) has an orthorhombic structure with the space group Bmab. The average particle sizes are approximately 300 nm for CaSmCoO4 and approximately 170 nm for CaGdCoO4, respectively. The global instability index (GII) indicates that the crystal structure of CaGdCoO4 is more stable than that of CaSmCoO4. CaLnCoO4 (Ln = Sm and Gd) is a p-type semiconductor and shows paramagnetic behavior above 5 K. The 1/χ-T curve of CaSmCoO4 deviates from the Curie-Weiss law, whereas the 1/χ-T curve of CaGdCoO4 follows the Curie-Weiss law in the temperature range of 5 ≤ T ≤ 300 K. From the values of the observed effective magnetic moment (μeff) of CaLnCoO4 (Ln = Sm and Gd), it is considered that the spin state of the Co3+ ion is low.  相似文献   

11.
A new compound V2GeO4F2 was earlier found to exist in the V2O3-VF3-GeO2 system and the structure elucidation revealed it to be iso-structural to the mineral topaz. Herein, we report the lattice thermal expansion data of this compound. The lattice thermal expansion of V2GeO4F2 was studied in the temperature range of 298-873 K under a flowing helium atmosphere by the high temperature XRD (HTXRD). The coefficients of axial thermal expansions of V2GeO4F2 were found to be as: αa = 3.5 × 10−6, αb = 6.1 × 10−6 and αc = 7.6 × 10−6 K−1. The coefficient of volume (αV) thermal expansion was 17.3 × 10−6 K−1, which is relatively low compared to many analogues silicates.  相似文献   

12.
The glass-forming region in the GeS2-Ga2S3-PbI2 system was determined and the basic parameters of thermal and optical properties (glass transition temperature, density, microhardness and transmission window) for these glasses have been measured. Better thermal stability originated from their larger difference between Tx and Tg in the range of 107-161 °C, higher glass transition temperatures between 252 and 398 °C and wide optical transmission window from 0.5 to 12.7 μm make these glasses the promising candidate materials for rare earth doped fiber amplifiers and nonlinear optical devices.  相似文献   

13.
Nanocrystalline powders of La10−xGe5.5Al0.5O26±δ (x = 0-0.5) with an average crystallite size of 50 nm were prepared by a freeze-drying precursor method. These powders were used to obtain dense ceramic materials at rather low temperature as 1100-1200 °C for 1 h and to study the transport properties by impedance spectroscopy. The composition with the highest La-content (x = 0) exhibits a second-order phase transition from triclinic () to hexagonal (P63/m) space groups around 750 °C, whereas for x ≥ 0.2 the materials presents hexagonal structure in the whole temperature range studied. The thermal properties of these materials were investigated by high temperature X-ray diffraction (XRD), thermal analysis (TG/DTA) and impedance spectroscopy. These results confirmed the incorporation of water in the germanate-apatite structure. However, the conductivity resulted to be independent on the gas atmosphere used, which seems to indicate that the proton contribution to the overall conductivity is negligible in these materials.  相似文献   

14.
A lead based quaternary compound composed of 0.25(PbZr0.52Ti0.48O3) + 0.25(PbFe0.5Ta0.5O3) + 0.25 (PbF0.67W0.33O3) + 0.25(PbFe0.5Nb0.5O3) - (PZT-PFT-PFW-PFN) was synthesized by conventional solid-state reaction techniques. It showed moderate high dielectric constant, low dielectric loss, and two diffuse phase transitions, one below the room temperature ∼261 K and other above ∼410 K. X-ray diffraction (XRD) patterns revealed a tetragonal crystal structure at room temperature where as scanning electron micrograph (SEM) indicates inhomogeneous surface with an average grain size of 500 nm-3 μm. Well saturated ferroelectric hysteresis loops with good saturation polarization (spontaneous polarization, Ps ∼ 30.68 μC/cm2) were observed. Temperature-dependent ac conductivity displayed low conductivity with kink in spectra near the phase transition. In continuing search for developing new ferroelectric materials, in the present study we report stoichiometric compositions of complex perovskite ceramic materials: (PZT-PFT-PFW-PFN) with diffuse phase transition behavior. The crystal structure, dielectric properties, and ferroelectric properties were characterized by XRD, SEM, dielectric spectroscopy, and polarization. 1/? versus (T) plots revealed diffuse relaxor phase transition (DPT) behavior. The compositional variation on the phase transition temperature, dielectric constant, and ferroelectric to paraelectric phase transitions are discussed.  相似文献   

15.
Deposition of Mn3CuNy thin films on single crystal Si (1 0 0) at various substrate temperatures (Tsub) by facing target magnetron sputtering is reported. The crystal structure and composition were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The results confirmed that the crystalline antiperovskite Mn3CuNy thin film with (2 0 0) highly preferred texture had been obtained at Tsub = 180 °C. Furthermore, for the resulting Mn3CuNy thin film, it showed different properties compared with the bulk counterpart. There was a paramagnetic to ferrimagnetic transition at 225 K with decreasing temperature. The change of the lattice constant with temperature presented positive thermal expansion behavior and no structural transition was observed. The average linear thermal expansion coefficient (α) is 2.49 × 10−5 K−1 from 123 K to 298 K. More interestingly, the temperature dependence of resistivity displayed a semiconductor-like behavior, i.e. an obvious monotonous decrease of resistivity with increasing temperature.  相似文献   

16.
The effects of doping of MgAl2O4 by a binary mixture of Co and Zn ions on the absorbance, electrical resistivity, capacitance, thermal conductivity, heat capacity and thermal diffusivity are reported in this paper. The materials with the nominal composition Mg1−2x(Co,Zn)xAl2O4 (x = 0.0-0.5) are synthesized by solution combustion synthesis assisted by microwave irradiation. The substituted spinels are produced with a Scherrer crystallite size of 18-23 nm, as opposed to 45 nm for undoped samples, indicated by X-ray diffraction and confirmed by transmission electron microscopy. These materials also show better thermal stability in the temperature range of 298-1773 K. Three strong absorption bands at 536, 577 and 630 nm are observed for the doped samples which are attributed to the three spin allowed (4A2 (F) → 4T1 (P)) electronic transitions of Co2+ at tetrahedral lattice sites while pure magnesium aluminate remains transparent in the whole spectral range. The semiconducting behavior of the materials is evident from the temperature dependence of the electrical resistivity. Resistivity and activation energy are higher for the substituted samples. Fitting of the resistivity data is achieved according to the hopping polaron model of solids. Both dielectric constant and loss increase on account of doping. The dielectric data are explained on the basis of space charge polarization. The thermal conductivity and diffusivity are lowered and the heat capacity is increased in the doped materials. Wiedemann-Franz's law is used to compute the electronic and lattice contributions towards the total thermal conductivity.  相似文献   

17.
The structure, ferroelectric characteristics and piezoelectric properties of (Na0.5Bi0.5)1 − xBaxTiO3 (x = 0.04, 0.06, 0.10) ceramics prepared by conventional solid state method were investigated. The influences of poling condition and sintering temperature on the piezoelectric properties of the ceramics were examined. The piezoelectric properties of the ceramics highly depend on poling field and temperature, while no remarkable effect of poling time on the piezoelectric properties was found in the range of 5-25 min. Compared with (Na0.5Bi0.5)0.96Ba0.04TiO3 and (Na0.5Bi0.5)0.90Ba0.10TiO3, the piezoelectric properties of (Na0.5Bi0.5)0.94Ba0.06TiO3 are more sensitive to poling temperature due to the relatively low depolarization temperature. Moderate increase of sintering temperature improved the poling process and piezoelectric properties due to the development of microstructural densification and crystal structure. With respect to sintering behavior and piezoelectric properties, a sintering temperature range of 1130-1160 °C was ascertained for (Na0.5Bi0.5)0.90Ba0.10TiO3.  相似文献   

18.
LaFeTeO6 was prepared by solid state reaction of La2O3, Fe2O3 and TeO2 in 1:1:2 molar ratios and characterized by powder X-ray diffraction, thermogravimetry and magnetometry. The detailed crystal structure analysis was carried out by Rietveld refinement. LaFeTeO6 crystallizes in a trigonal lattice with unit cell parameters: a = 5.2049(1) Å and c = 10.3457(2) Å, V = 242.73(2) Å3. The crystal structure is built from sheets of the edge shared FeO6 and TeO6 octahedra stacked along the c-axis. These sheets are connected together by La3+ ions. Thermogravimetric analysis of the compound showed it to be thermally stable up to 1323 K and continuous loss of TeO2 was observed above 1323 K leading to the formation of LaFeO3. High temperature XRD studies revealed a normal expansion behavior of the compound. Temperature and field dependent magnetization of LaFeTeO6 showed paramagnetic behavior in the temperature range of 3-300 K. The effective magnetic moment per Fe3+ ion (5.14 μB) indicates the high spin d5 state of Fe3+ ion.  相似文献   

19.
Anatase and rutile TiO2 thin films were prepared by chemical vapor deposition with precursors Ti(OPri)4 and Ti(dpm)2(OPri)2 (dpm = 2,2,6,6-tetramethylheptane-3,5-dione and Pri = isopropyl), respectively. The dielectric properties of TiO2 thin films have been studied in 20-1100 K temperature range in air, in controlled Ar/O2 atmospheres, and in vacuum with silicon-based metal-insulator-semiconductor Au/TiO2/Si capacitors. High-temperature (Tc ∼ 980 K) anomalous behavior of dielectric constant was observed in both anatase and rutile TiO2 thin films.  相似文献   

20.
The studies of the specific heat, electrical resistivity and thermoelectric power of YbNi4Si are reported. These studies are supported by magnetic susceptibility and X-ray photoemission spectroscopy (XPS) measurements. YbNi4Si does not order magnetically down to 4 K. Nearly in the whole temperature range studied the magnetic susceptibility follows a Curie law with μeff = 4.15 μB/f.u. This effective magnetic moment is close to the value expected for the 4f13 configuration (4.54 μB). The Yb2+ and Yb3+ peaks observed by XPS in the valence band region confirm the domination of the Yb3+ valence state. Based on the specific heat measurements, the electronic specific heat coefficient γ = 25 mJ/mol/K2 and the Debye temperature θD = 320 K were derived. A quadratic dependence of electrical resistivity at low temperatures has been observed. The Kadowaki-Woods ratio has been discussed. The thermoelectric power has been analyzed in the framework of the two band model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号