首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rab2 is essential for the maturation of pre-Golgi intermediates   总被引:1,自引:0,他引:1  
The small GTPase Rab2 is a resident of pre-Golgi intermediates and required for protein transport from the endoplasmic reticulum (ER) to the Golgi complex (Tisdale, E. J., Bourne, J. R., Khosravi-Far, R. , Der, C. J., and Balch, W. E. (1992) J. Cell Biol. 119, 749-761). The Rab2 protein, like all small GTPases, contains conserved GTP-binding domains as well as hypervariable carboxyl-terminal and amino-terminal domains. While the role of the carboxyl terminus in specific membrane localization is well recognized, the potential role of the variable NH2 terminus remains to be clarified. To determine whether the NH2 terminus of Rab2 was required for its activity in vivo, a trans dominant mutant of Rab2 that inhibits ER to Golgi transport was progressively truncated and analyzed for its effect on vesicular stomatitis virus glycoprotein transport in a vaccinia-based transient expression system. Deletion of the first 14 amino-terminal residues resulted in the loss of the inhibitory properties of the mutant without affecting its post-translational processing or membrane association. To assess the potential role of the NH2 terminus in Rab2 function, a peptide corresponding to the first 13 amino acids following the initiator methionine was introduced into an in vitro assay that efficiently reconstitutes transport of vesicular stomatitis virus glycoprotein from the ER to the Golgi stack. This peptide was a potent inhibitor of transport. Biochemical and morphological studies revealed that the peptide strongly interfered with assembly of pre-Golgi intermediates which mediate segregation of anterograde and retrograde transported proteins en route to the Golgi. The combined results suggest that the NH2 terminus of Rab2 is required for its function and for direct interaction with components of the transport machinery involved in the maturation of pre-Golgi intermediates.  相似文献   

2.
The yeast adenylyl cyclase-associated protein, CAP, was identified as a component of the RAS-activated cyclase complex. CAP consists of two functional domains separated by a proline-rich region. One domain, which localizes to the amino terminus, mediates RAS signaling through adenylyl cyclase, while a domain at the carboxyl terminus is involved in the regulation of cell growth and morphogenesis. Recently, the carboxyl terminus of yeast CAP was shown to sequester actin, but whether this function has been conserved, and is the sole function of this domain, is unclear. Here, we demonstrate that the carboxyl-terminal domains of CAP and CAP homologs have two separate functions. We show that carboxyl-terminals of both yeast CAP and a mammalian CAP homolog, MCH1, bind to actin. We also show that this domain contains a signal for dimerization, allowing both CAP and MCH1 to form homodimers and heterodimers. The properties of actin binding and dimerization are mediated by separate regions on the carboxyl terminus; the last 27 amino acids of CAP being critical for actin binding. Finally, we present evidence that links a segment of the proline-rich region of CAP to its localization in yeast. Together, these results suggest that all three domains of CAP proteins are functional.  相似文献   

3.
Integral membrane proteins (IMPs) contain localization signals necessary for targeting to their resident subcellular compartments. To define signals that mediate localization to the Golgi complex, we have analyzed a resident IMP of the Saccharomyces cerevisiae Golgi complex, guanosine diphosphatase (GDPase). GDPase, which is necessary for Golgi-specific glycosylation reactions, is a type II IMP with a short amino-terminal cytoplasmic domain, a single transmembrane domain (TMD), and a large catalytic lumenal domain. Regions specifying Golgi localization were identified by analyzing recombinant proteins either lacking GDPase domains or containing corresponding domains from type II vacuolar IMPs. Neither deletion nor substitution of the GDPase cytoplasmic domain perturbed Golgi localization. Exchanging the GDPase TMD with vacuolar protein TMDs only marginally affected Golgi localization. Replacement of the lumenal domain resulted in mislocalization of the chimeric protein from the Golgi to the vacuole, but a similar substitution leaving 34 amino acids of the GDPase lumenal domain intact was properly localized. These results identify a major Golgi localization determinant in the membrane-adjacent lumenal region (stem) of GDPase. Although necessary, the stem domain is not sufficient to mediate localization; in addition, a membrane-anchoring domain and either the cytoplasmic or full-length lumenal domain must be present to maintain Golgi residence. The importance of lumenal domain sequences in GDPase Golgi localization and the requirement for multiple hydrophilic protein domains support a model for Golgi localization invoking protein-protein interactions rather than interactions between the TMD and the lipid bilayer.  相似文献   

4.
SPA2 encodes a yeast protein that is one of the first proteins to localize to sites of polarized growth, such as the shmoo tip and the incipient bud. The dynamics and requirements for Spa2p localization in living cells are examined using Spa2p green fluorescent protein fusions. Spa2p localizes to one edge of unbudded cells and subsequently is observable in the bud tip. Finally, during cytokinesis Spa2p is present as a ring at the mother-daughter bud neck. The bud emergence mutants bem1 and bem2 and mutants defective in the septins do not affect Spa2p localization to the bud tip. Strikingly, a small domain of Spa2p comprised of 150 amino acids is necessary and sufficient for localization to sites of polarized growth. This localization domain and the amino terminus of Spa2p are essential for its function in mating. Searching the yeast genome database revealed a previously uncharacterized protein which we name, Sph1p (a2p omolog), with significant homology to the localization domain and amino terminus of Spa2p. This protein also localizes to sites of polarized growth in budding and mating cells. SPH1, which is similar to SPA2, is required for bipolar budding and plays a role in shmoo formation. Overexpression of either Spa2p or Sph1p can block the localization of either protein fused to green fluorescent protein, suggesting that both Spa2p and Sph1p bind to and are localized by the same component. The identification of a 150-amino acid domain necessary and sufficient for localization of Spa2p to sites of polarized growth and the existence of this domain in another yeast protein Sph1p suggest that the early localization of these proteins may be mediated by a receptor that recognizes this small domain.  相似文献   

5.
The expression of full-length dystrophin and various dystrophin deletion mutants was monitored in mdx mouse muscle after intramuscular injection of dystrophin-encoding plasmid DNAs. Recombinant dystrophin proteins, including those lacking either the amino terminus, carboxyl terminus, or most of the central rod domain, showed localization to the plasma membrane. This suggests that there are multiple attachment sites for dystrophin to the plasma membrane. Only those constructs containing the carboxyl terminus were able to stabilize dystrophin-associated proteins (DAP) at the membrane, consistent with other studies that suggest that this domain is critical to DAP binding. Colocalization with DAP was not necessary for membrane localization of the various dystrophin molecules. However, stabilization and co-localization of the DAP did seem to be a prerequisite for expression and/or stabilization of mutant dystrophins beyond 1 wk and these same criteria seemed important for mitigating the histopathological consequences of dystrophin deficiency.  相似文献   

6.
A conserved family of Ran binding proteins (RBPs) has been defined by their ability to bind to the Ran GTPase and the presence of a common region of approximately 100 amino acids (the Ran binding domain). The yeast Saccharomyces cerevisiae genome predicts only three proteins with canonical Ran binding domains. Mutation of one of these, YRB1, results in defects in transport of macromolecules across the nuclear envelope (Schlenstedt, G., Wong, D. H., Koepp, D. M., and Silver, P. A. (1995) EMBO J. 14, 5367-5378). The second one, encoded by YRB2, is a 327-amino acid protein with a Ran binding domain at its C terminus and an internal cluster of FXFG and FG repeats conserved in nucleoporins. Yrb2p is located inside the nucleus, and this localization relies on the N terminus. Results of both genetic and biochemical analyses show interactions of Yrb2p with the Ran nucleotide exchanger Prp20p/Rcc1. Yrb2p binding to Gsp1p (yeast Ran) as well as to a novel 150-kDa GTP-binding protein is also detected. The Ran binding domain of Yrb2p is essential for function and for its association with Prp20p and the GTP-binding proteins. Taken together, we suggest that Yrb2p may play a role in the Ran GTPase cycle distinct from nuclear transport.  相似文献   

7.
The catabolism of aggrecan in bovine articular cartilage explants is characterized by the release into the culture medium of high molecular weight aggrecan fragments, generated by the proteolytic cleavage of the core protein between residues Glu373 and Ala374 within the interglobular domain. In this study, the position of the carboxyl-terminus of these aggrecan fragments, as well as a major proteolytically shortened aggrecan core protein present in cartilage matrix, have been deduced by characterizing the peptides generated by the reaction of aggrecan core protein peptides with cyanogen bromide. It was shown that two out of three such peptide fragments having an amino terminus starting at Ala374 have their carboxyl terminus located within the chondroitin sulfate 1 domain. The third and largest aggrecan core protein peptide, with an amino terminus starting at Ala374, has a carboxyl terminus in a region of core protein between the chondroitin sulfate 1 domain and the chondroitin sulfate 2 domain. The carboxyl terminus of this peptide appeared to be the same as that of the proteolytically degraded aggrecan core protein, which is retained within the extracellular matrix of the tissue. Another two aggrecan fragments recovered from the medium of explant cultures with amino-terminal sequences in the chondroitin sulfate 2 domain at Ala1772 and Leu1872 were shown to have their carboxyl termini within the G3 globular domain. These results suggest that the catabolism of aggrecan between residues Glu373 and Ala374 in the interglobular domain by the putative proteinase, aggrecanase, may be dependent on prior proteolytic processing within the carboxyl-terminal region of the core protein.  相似文献   

8.
The guanine nucleotide exchange factor Sos mediates the coupling of receptor tyrosine kinases to Ras activation. To investigate the mechanisms that control Sos activity, we have analyzed the contribution of various domains to its catalytic activity. Using human Sos1 (hSos1) truncation mutants, we show that Sos proteins lacking either the amino or the carboxyl terminus domain, or both, display a guanine nucleotide exchange activity that is significantly higher compared with that of the full-length protein. These results demonstrate that both the amino and the carboxyl terminus domains of Sos are involved in the negative regulation of its catalytic activity. Furthermore, in vitro Ras binding experiments suggest that the amino and carboxyl terminus domains exert negative allosteric control on the interaction of the Sos catalytic domain with Ras. The guanine nucleotide exchange activity of hSos1 was not augmented by growth factor stimulation, indicating that Sos activity is constitutively maintained in a downregulated state. Deletion of both the amino and the carboxyl terminus domains was sufficient to activate the transforming potential of Sos. These findings suggest a novel negative regulatory role for the amino terminus domain of Sos and indicate a cooperation between the amino and the carboxyl terminus domains in the regulation of Sos activity.  相似文献   

9.
Although hydropathy analysis of the skeletal muscle chloride channel protein, ClC-1, initially predicted 13 potential membrane spanning domains (D1 to D13), later topological studies have suggested that domain D4 is extracellular and that D13, conserved in all eukaryotic ClC channels, is located within the extensive cytoplasmic tail that makes up the carboxyl terminus of the protein. We have examined the effect of deleting D13 (DeltaD13) and the function of the carboxyl tail by removing the final 72 (fs923X), 100 (fs895X), 125 (L869X), 398 (N596X), and 420 (Q574X) amino acids from rat ClC-1. Appropriate cDNA constructs were prepared and expressed using the baculovirus Sf9 insect cell system. Patch clamp analysis of chloride currents in Sf9 cells showed that only relatively insubstantial changes could be attributed to the expressed fs923X, fs895X, and DeltaD13 mutants compared with wild type rat ClC-1. For N596X and Q574X, however, adequate mRNA could be detected, but neither patch clamp nor polyacrylamide gel electrophoresis showed corresponding protein production. By contrast, expression of L869X was demonstrable by polyacrylamide gel electrophoresis, but no chloride conductance attributable to it could be detected. Overall, our results indicate that the domain D13 is dispensable, as are the final 100 amino acids, but not the final 125 amino acids or more, of the carboxyl tail. Some essential region of unknown significance, therefore, appears to reside in the 18 amino acids after D13, from Lys877 to Arg894.  相似文献   

10.
Ephrin B proteins function as ligands for B class Eph receptor tyrosine kinases and are postulated to possess an intrinsic signaling function. The sequence at the carboxyl terminus of B-type ephrins contains a putative PDZ binding site, providing a possible mechanism through which transmembrane ephrins might interact with cytoplasmic proteins. To test this notion, a day 10.5 mouse embryonic expression library was screened with a biotinylated peptide corresponding to the carboxyl terminus of ephrin B3. Three of the positive cDNAs encoded polypeptides with multiple PDZ domains, representing fragments of the molecule GRIP, the protein syntenin, and PHIP, a novel PDZ domain-containing protein related to Caenorhabditis elegans PAR-3. In addition, the binding specificities of PDZ domains previously predicted by an oriented library approach (Songyang, Z., Fanning, A. S., Fu, C., Xu, J., Marfatia, S. M., Chishti, A. H., Crompton, A., Chan, A. C., Anderson, J. M., and Cantley, L. C. (1997) Science 275, 73-77) identified the tyrosine phosphatase FAP-1 as a potential binding partner for B ephrins. In vitro studies demonstrated that the fifth PDZ domain of FAP-1 and full-length syntenin bound ephrin B1 via the carboxyl-terminal motif. Lastly, syntenin and ephrin B1 could be co-immunoprecipitated from transfected COS-1 cells, suggesting that PDZ domain binding of B ephrins can occur in cells. These results indicate that the carboxyl-terminal motif of B ephrins provides a binding site for specific PDZ domain-containing proteins, which might localize the transmembrane ligands for interactions with Eph receptors or participate in signaling within ephrin B-expressing cells.  相似文献   

11.
Vesicular transport between secretory compartments requires specific recognition molecules called SNAREs. Here we report the identification of three putative SNAREs, p14 (Sft1p), p28 (Gos1p), and a detailed characterization of p26 (Ykt6p). All three were originally isolated as interacting partners of the cis Golgi target membrane-associated SNARE Sed5p, when Sec18p (yeast NSF) was inactivated. YKT6 is an essential gene that codes for a novel vesicle-associated SNARE functioning at the endoplasmic reticulum-Golgi transport step in the yeast secretory pathway. Depletion of Ykt6p results in the accumulation of the p1 precursor (endoplasmic reticulum form) of the vacuolar enzyme carboxypeptidase Y and morphological abnormalities consistent with a defect in secretion. Membrane localization of Ykt6p is essential for protein function and is normally mediated by isoprenylation. However, replacement of the isoprenylation motif with a bona fide transmembrane anchor results in a functional protein confirming that membrane localization, but not isoprenylation per se, is required for function. Ykt6p and its homologues are highly conserved from yeast to human as demonstrated by the functional complementation of the loss of Ykt6p by its human counterpart. This is the first example of a human SNARE protein functionally replacing a yeast SNARE. This observation implies that the specific details of the vesicle targeting code, like the genetic code, are conserved in evolution.  相似文献   

12.
Batten disease (juvenile neuronal ceroid lipofuscinosis) is a recessive neurodegenerative disorder of childhood. The gene, CLN3, was recently identified and found to encode a novel 438 amino acid protein of unknown function. In order to gain insight into the function of the Batten disease protein (CLN3p), we investigated its subcellular localization. Protein constructs incorporating CLN3p fused to the green fluorescence protein or an eight amino acid peptide tag were transiently expressed in fibroblasts, HeLa and COS-7 cells. A juxtanuclear, asymmetric localization pattern was observed that correlated with the Golgi apparatus in all three cell types. However, a proportion of transiently transfected cells exhibited a punctate vesicular distribution throughout the cytoplasm in addition to or without the Golgi localization. In order to account for localization patterns arising from intracellular protein transport disruption due to exaggerated overexpression in transiently transfected cells, we isolated a stably transfected cell line expressing only one copy of the CLN3 -GFP DNA construct. Fluorescence and biochemical analyses using this cell line demonstrated that CLN3p is an integral membrane protein that localizes primarily in the Golgi apparatus. The functional implications of this finding are discussed.  相似文献   

13.
Eukaryotic proteins containing a C-terminal CAAX motif undergo a series of posttranslational CAAX-processing events that include isoprenylation, C-terminal proteolytic cleavage, and carboxyl methylation. We demonstrated previously that the STE14 gene product of Saccharomyces cerevisiae mediates the carboxyl methylation step of CAAX processing in yeast. In this study, we have investigated the subcellular localization of Ste14p, a predicted membrane-spanning protein, using a polyclonal antibody generated against the C terminus of Ste14p and an in vitro methyltransferase assay. We demonstrate by immunofluorescence and subcellular fractionation that Ste14p and its associated activity are localized to the endoplasmic reticulum (ER) membrane of yeast. In addition, other studies from our laboratory have shown that the CAAX proteases are also ER membrane proteins. Together these results indicate that the intracellular site of CAAX protein processing is the ER membrane, presumably on its cytosolic face. Interestingly, the insertion of a hemagglutinin epitope tag at the N terminus, at the C terminus, or at an internal site disrupts the ER localization of Ste14p and results in its mislocalization, apparently to the Golgi. We have also expressed the Ste14p homologue from Schizosaccharomyces pombe, mam4p, in S. cerevisiae and have shown that mam4p complements a Deltaste14 mutant. This finding, plus additional recent examples of cross-species complementation, indicates that the CAAX methyltransferase family consists of functional homologues.  相似文献   

14.
Resident proteins of the exocytic pathway contain at least two types of information in their primary sequence for determining their subcellular location. The first type of information is found at the carboxyl terminus of soluble proteins of the endoplasmic reticulum (ER) and in the cytoplasmic domain of some ER and Golgi membrane proteins. It acts as a retrieval signal, returning proteins that have left the compartment in which they reside. The second type of information has been found in the membrane-spanning domain of several ER and Golgi proteins and, though the mechanism by which it operates is still unclear, it acts as a retention signal, keeping the protein at a particular location within the organelle. The presence of both a retrieval signal and a retention signal in a trans-Golgi network resident protein suggests that more than one mechanism operates to ensure correct localization of resident proteins along the exocytic pathway.  相似文献   

15.
Budding of transport vesicles in the Golgi apparatus requires the recruitment of coat proteins and is regulated by ADP ribosylation factor (ARF) 1. ARF1 activation is promoted by guanine nucleotide exchange factors (GEFs), which catalyze the transition to GTP-bound ARF1. We recently have identified a human protein, ARNO (ARF nucleotide-binding-site opener), as an ARF1-GEF that shares a conserved domain with the yeast Sec7 protein. We now describe a human Sec7 domain-containing GEF referred to as ARNO3. ARNO and ARNO3, as well as a third GEF called cytohesin-1, form a family of highly related proteins with identical structural organization that consists of a central Sec7 domain and a carboxy-terminal pleckstrin homology domain. We show that all three proteins act as ARF1 GEF in vitro, whereas they have no effect on ARF6, an ARF protein implicated in the early endocytic pathway. Substrate specificity of ARNO-like GEFs for ARF1 depends solely on the Sec7 domain. Overexpression of ARNO3 in mammalian cells results in (i) fragmentation of the Golgi apparatus, (ii) redistribution of Golgi resident proteins as well as the coat component beta-COP, and (iii) inhibition of SEAP transport (secreted form of alkaline phosphatase). In contrast, the distribution of endocytic markers is not affected. This study indicates that Sec7 domain-containing GEFs control intracellular membrane compartment structure and function through the regulation of specific ARF proteins in mammalian cells.  相似文献   

16.
The p21-activated protein kinases (PAKs) are activated through direct interaction with the GTPases Rac and Cdc42Hs, which are implicated in the control of the mitogen-activated protein kinase (MAP kinase) c-Jun N-terminal kinase (JNK) and the reorganization of the actin cytoskeleton [1-3]. The exact role of the PAK proteins in these signaling pathways is not entirely clear. To elucidate the biological function of Pak2 and to identify its molecular targets, we used a novel two-hybrid system, the Ras recruitment system (RRS), that aims to detect protein-protein interactions at the inner surface of the plasma membrane (described in the accompanying paper by Broder et al. [4]). The Pak2 regulatory domain (PakR) was fused at the carboxyl terminus of a RasL61 mutant protein and screened against a myristoylated rat pituitary cDNA library. Four clones were identified that interact specifically with PakR and three were subsequently shown to encode a previously unknown homologue of the GTPase Cdc42Hs. This approximately 36 kDa protein, designated Chp, exhibits an overall sequence identity to Cdc42Hs of approximately 52%. Chp contains two additional sequences at the amino and carboxyl termini that are not found in any known GTPase. The amino terminus contains a polyproline sequence, typically found in Src homology 3 (SH3)-binding domains, and the carboxyl terminus appears to be important for Pak2 binding. Results from the microinjection of Chp into cells implicated Chp in the induction of lamellipodia and showed that Chp activates the JNK MAP kinase cascade.  相似文献   

17.
The identification of proteinases of Porphyromonas gingivalis that act as virulence factors in periodontal disease has important implications in the study of host-pathogen interactions as well as in the discovery of potential therapeutic and immunoprophylactic agents. We have cloned and characterized a gene that encodes the 50-kDa cysteine proteinase gingipain or Arg-gingipain-1 (RGP-1) described previously (Chen, Z., Potempa, J., Polanowski, A., Wikstrom, M., and Travis, J. (1992) J. Biol. Chem. 267, 18896-18901). Analysis of the amino acid sequence of RGP-1 deduced from the cloned DNA sequence showed that the biosynthesis of this proteinase involves processing of a polyprotein that contains multiple adhesin molecules located at its carboxyl terminus. This finding corroborates previous evidence (Pike R., McGraw, W., Potempa, J., and Travis, J. (1994) J. Biol. Chem. 269, 406-411) that RGP-1 is closely associated with adhesin molecules, and that high molecular weight forms of the proteinase are involved in the binding of erythrocytes.  相似文献   

18.
The amyloid protein, Abeta, which accumulates in the brains of Alzheimer patients, is derived by proteolysis of the amyloid protein precursor (APP). APP can undergo endoproteolytic processing at three sites, one at the amino terminus of the Abeta domain (beta-cleavage), one within the Abeta domain (alpha-cleavage), and one at the carboxyl terminus of the Abeta domain (gamma-cleavage). The enzymes responsible for these activities have not been unambiguously identified. By the use of gene disruption (knockout), we now demonstrate that TACE (tumor necrosis factor alpha converting enzyme), a member of the ADAM family (a disintegrin and metalloprotease-family) of proteases, plays a central role in regulated alpha-cleavage of APP. Our data suggest that TACE may be the alpha-secretase responsible for the majority of regulated alpha-cleavage in cultured cells. Furthermore, we show that inhibiting this enzyme affects both APP secretion and Abeta formation in cultured cells.  相似文献   

19.
A genetic screen to isolate gene products required for vacuolar morphogenesis in the yeast Saccharomyces cerevisiae identified VAM7, a gene which encodes a protein containing a predicted coiled-coil domain homologous to the coiled-coil domain of the neuronal t-SNARE, SNAP-25 (Y. Wada and Y. Anraku, J. Biol. Chem. 267:18671-18675, 1992; T. Weimbs, S. H. Low, S. J. Chapin, K. E. Mostov, P. Bucher, and K. Hofmann, Proc. Natl. Acad. Sci. USA 94:3046-3051, 1997). Analysis of a temperature-sensitive-for-function (tsf) allele of VAM7 (vam7(tsf)) demonstrated that the VAM7 gene product directly functions in vacuolar protein transport. vam7(tsf) mutant cells incubated at the nonpermissive temperature displayed rapid defects in the delivery of multiple proteins that traffic to the vacuole via distinct biosynthetic pathways. Examination of vam7(tsf) cells at the nonpermissive temperature by electron microscopy revealed the accumulation of aberrant membranous compartments that may represent unfused transport intermediates. A fraction of Vam7p was localized to vacuolar membranes. Furthermore, VAM7 displayed genetic interactions with the vacuolar syntaxin homolog, VAM3. Consistent with the genetic results, Vam7p physically associated in a complex containing Vam3p, and this interaction was enhanced by inactivation of the yeast NSF (N-ethyl maleimide-sensitive factor) homolog, Sec18p. In addition to the coiled-coil domain, Vam7p also contains a putative NADPH oxidase p40(phox) (PX) domain. Changes in two conserved amino acids within this domain resulted in synthetic phenotypes when combined with the vam3(tsf) mutation, suggesting that the PX domain is required for Vam7p function. This study provides evidence for the functional and physical interaction between Vam7p and Vam3p at the vacuolar membrane, where they function as part of a t-SNARE complex required for the docking and/or fusion of multiple transport intermediates destined for the vacuole.  相似文献   

20.
Euglena chloroplast protein precursors are transported as integral membrane proteins from the endoplasmic reticulum (ER) to the Golgi apparatus prior to chloroplast localization. All Euglena chloroplast protein precursors have functionally similar bipartite presequences composed of an N-terminal signal peptide domain and a stromal targeting domain containing a hydrophobic region approximately 60 amino acids from the predicted signal peptidase cleavage site. Asparagine-linked glycosylation reporters and presequence deletion constructs of the precursor to the Euglena light-harvesting chlorophyll a/b-binding protein of photosystem II (pLHCPII) were used to identify presequence regions translocated into the ER lumen and stop transfer membrane anchor domains. An asparagine-linked glycosylation site present at amino acid 148 of pLHCPII near the N terminus of mature LHCPII was not glycosylated in vitro by canine microsomes while an asparagine-linked glycosylation site inserted at amino acid 40 was. The asparagine at amino acid 148 was glycosylated upon deletion of amino acids 46-146, which contain the stromal targeting domain, indicating that the hydrophobic region within this domain functions as a stop transfer membrane anchor sequence. Protease protection assays indicated that for all constructs, mature LHCPII was not translocated across the microsomal membrane. Taken together with the structural similarity of all Euglena presequences, these results demonstrate that chloroplast precursors are anchored within ER and Golgi transport vesicles by the stromal targeting domain hydrophobic region oriented with the presequence N terminus formed by signal peptidase cleavage in the vesicle lumen and the mature protein in the cytoplasm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号