首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
An experimental study of boiling heat transfer with refrigerants R-410A and R-407C is presented. The present paper is focused on pressure drop and boiling heat transfer coefficient of the refrigerants inside a horizontal smooth minichannel. To evaluate the diameter size effect on pressure and heat transfer characteristics, minichannels with inner diameters of 1.5 mm and 3.0 mm and with lengths of 1500 mm and 3000 mm respectively are used. The pressure drop increases with mass flux and heat flux for both inner tube diameters and for both the refrigerants. The pressure drop of R-407C is higher than that of R-410A, but the heat transfer coefficient of R-410A is higher than of R-407C at the low quality region. The heat transfer coefficient in the tube with an inner diameter of 1.5 mm is higher than that of 3.0 mm diameter tube at the low quality region. The comparison of present heat transfer coefficient with the predictions of some previous correlations shows a large deviation. Therefore, there is a necessity to develop a new correlation.  相似文献   

2.
Forced convective boiling heat transfer coefficients were predicted for an annular flow inside a horizontal tube for pure refrigerants and nonazeotropic binary refrigerant mixtures. The heat transfer coefficients were calculated based on the turbulent temperature profile in liquid film and vapor core considering the composition difference in vapor and liquid phases, and the nonlinearity in mixing rules for the calculation of mixture properties. The heat transfer coefficients of pure refrigerants were estimated within a standard deviation of 14% compared with available experimental data. For nonazeotropic binary refrigerant mixtures, prediction of the heat transfer coefficients was made with a standard deviation of 18%. The heat transfer coefficients of refrigerant mixtures were lower than linearly interpolated values calculated from the heat transfer coefficients of pure refrigerants. This degradation was represented by several factors such as the difference between the liquid and the overall compositions, the conductivity ratio and the viscosity ratio of both components in refrigerant mixtures. The temperature change due to the concentration gradient was a major factor for the heat transfer degradation and the mass flux itself at the interface had a minor effect.  相似文献   

3.
Condensation heat transfer coefficients in a 7.92 mm inside diameter copper smooth tube were obtained experimentally for R22, R134a, and R410A. Working conditions were in the range of 30–40°C condensation temperature, 95–410 kg/m2s mass flux, and 0.15–0.85 vapor quality. The experimental data were compared with the eight existing correlations for an annular flow regime. Based on the heat-momentum analogy, a condensation heat transfer coefficients correlation for the annular flow regime was developed. The Breber et al. flow regime map was used to discern flow pattern and the Muller-Steinhagen & Heck pressure drop correlation was used for the term of the proposed correlation. The proposed correlation provided the best predicted performance compared to the eight existing correlations and its root mean square deviation was less than 8.7%.  相似文献   

4.
Evaporation heat transfer coefficients and pressure drops were measured for smooth and micro-fin tubes with R-22 and R-410A. Heat transfer measurements were performed for 3.0 m long horizontal tubes with nominal outside diameters of 9.52 and 7.0 mm over an evaporating temperature range of ?15 to 5°C, a mass flux range of 68 to 211 kg/m2s, and a heat flux range of 5 to 15 kW/m2. It was observed that the heat transfer coefficient increased with mass flux. Evaporation heat transfer coefficients of R-22 and R-410A increased as the evaporating temperature dropped at a lower heat flux. Generally, R-410A showed the higher heat transfer coefficients than R-22 in the range of low mass flux, high heat flux and high evaporating temperature. Pressure drop increased with a decrease of evaporating temperature and a rise of mass flux. Pressure drop of R-22 was higher than that of R-410A at the same mass flux.  相似文献   

5.
对非共沸制冷剂R410A在一根水平光管和2根25.4 mm水平双侧强化管管外冷凝换热特性进行研究.分别研究在变入口水温和变水流量的条件下,制冷剂的管外冷凝换热特性.利用Wilson图解法和Wilson-Gnielinski法计算管外冷凝换热系数,并分析两种处理方法所得到的管外冷凝换热系数的差异,最后根据Nusselt管...  相似文献   

6.
The characteristics of the two-phase flow heat transfer of R-134a in microtubes with inner diameters of 430 μm and 792 μm were experimentally investigated. The effect of the heat flux on the heat transfer coefficient for microtubes was significant before the transition quality. The boiling number expressed the interrelation between the heat flux and the mass about the heat transfer coefficients. The smaller microtube had greater heat transfer coefficients; the average heat transfer coefficient for the tube A (D i = 430 μm) was 47.0% greater than that for the tube B (D i = 792 μm) at G = 370 kg/m2·s and q″ = 20 kW·m2. A new correlation for the evaporative heat transfer coefficients in microtubes was developed by considering the following factors: the laminar flow heat transfer coefficient of liquid-phase flow, the enhancement factor of the convective heat transfer, and the nucleate boiling correction factor. The correlation developed in present study predicted the experimental heat transfer coefficients within an absolute average deviation of 8.4%.  相似文献   

7.
The critical condition of the onset of buoyancy-driven convective motion of uniformly heated horizontal fluid layer was analysed by the propagation theory which transforms the disturbance quantities similarly. The dimensionless critical time,τ c , is obtained as a function of the Rayleigh number and the Prandtl number. Based on the stability criteria and the boundary-layer instability model, a new heat transfer correlation which can cover whole range of Rayleigh number was derived. Our theoretical results predict the experimental results quite reasonably.  相似文献   

8.
In this paper, the evaluation of a measurement method is discussed which can determine the heat transfer coefficient in convection reflow ovens. Nowadays the reflow ovens apply forced convection heating with nozzle-matrix blower system. In these ovens the heat transfer coefficients of the heater gas streams determine mainly the efficiency of heating. A method is presented which has two steps: in the first step, the heat transfer coefficient of the heater gas streams is studied above the assembly in function of height; in the second step, the heating efficiency of the nozzle-lines is compared as a distribution of the heat transfer coefficient in the oven. The heat transfer coefficients are calculated from the heat equation of the reflow oven. It is also presented with the distributions of the heat transfer coefficient that how the contamination of the nozzles affects the heating efficiency of the reflow oven.  相似文献   

9.
A tube type heat exchanger is often the only solution when minimum pressure loss is a requirement. In addition, small diameter tubes are preferable because of an increased heat transfer area within an acceptable pressure loss limit. The present work reports on both an analytic model and experimental results with regards to the pressure drop and heat transfer characteristics of compact straight, C-curved, and U-curved tubes. The inner diameter of the tube (D) for our selected heat exchanger type was 1.26 mm with a thickness of 0.12 mm and a total length of 150.8 D. For the experiment, pressurized nitrogen gas bottles were used rather than an air compressor system in order to simplify the test facility. Hence the pressure conditions were easily set at 10, 30, and 50 bar corresponding to a range of Reynolds numbers from 10000 to 50000. To elevate the air temperature outside the tube (from 100°C to 400°C), an electric furnace was installed around the “test tube”. An analytic model to determine the pressure loss through curved tubes-referred to as the modified friction factor- is proposed. Good agreement was found between the modified friction factor and existing correlations, thus confirming the suitability of this model for determining pressure losses for different shape of tubes. The average measured Nusselt numbers were within 10- 15% of the Dittus-Boelter and Gnielinski correlations.  相似文献   

10.
Heat transfer coefficients were measured in a channel with one side dimpled surface. The sphere type dimples were fabricated, and the diameter (D) and the depth of dimple was 16 mm and 4 mm, respectively. Two channel heights of about 0.6D and 1.2D, two dimple configurations were tested. The Reynolds number based on the channel hydraulic diameter was varied from 30000 to 50000. The improved hue detection based transient liquid crystal technique was used in the heat transfer measurement. Heat transfer measurement results showed that high heat transfer was induced downstream of the dimples due to flow reattachment. Due to the flow recirculation on the upstream side in the dimple, the heat transfer coefficient was very low. As the Reynolds increased, the overall heat transfer coefficients also increased. With the same dimple arrangement, the heat transfer coefficients and the thermal performance factors were higher for the lower channel height. As the distance between the dimples became smaller, the overall heat transfer coefficient and the thermal performance factors increased. This paper was recommended for publication in revised form by Associate Editor Yong Tae Kang Jae Su Kwak received his B.S. and M.S. degrees in Mechanical Engineering from Korea University in 1996 and 1998, respectively. He then received his Ph.D. from Texas A&M University in 2002. Dr. Kwak is currently an Assistant Professor at the School of Aerospace and Mechanical Engineering at Korea Aerospace University in Goyang-City, Korea. His main research interests include gas turbine heat transfer, compact heat exchanger, and enhancement of heat transfer.  相似文献   

11.
In this study, pool-boiling experiments are carried out to find out the influence of nanoparticles on boiling heat transfer coefficient and CHF. Each surface of the heater is visualized with FE-SEM and AFM after the experiments to figure out the effective boiling areas. The CHF increases up to 103% (compared to pure water) as the particle concentration increases until 0.001 vol% while it starts to decrease gradually as the particle concentration increases more than 0.001 vol%. It is found that the increase of CHF is proportional to the effective boiling surface area and the reduction of boiling heat transfer coefficient (BHTC) is mainly attributed to the blocking of the active nucleation cavity and the increase of the heat transfer resistance by nanoparticle deposition on the boiling surface. Finally, this study proposes a novel mechanism for BHTC reduction and CHF enhancement by nanofluids by considering the effective surface area variation.  相似文献   

12.
In this study, the effect of carbon nanotubes (CNTs) on nucleate boiling heat transfer is investigated. Three refrigerants of R22, R123, R134a, and water were used as working fluids and 1.0 vol.% of CNTs was added to the working fluids to examine the effect of CNTs. Experimental apparatus was composed of a stainless steel vessel and a plain horizontal tube heated by a cartridge heater. All data were obtained at the pool temperature of 7°C for all refrigerants and 100°C for water in the heat flux range of 10–80 kW/m2. Test results showed that CNTs increase nucleate boiling heat transfer coefficients for all fluids. Especially, large enhancement was observed at low heat fluxes of less than 30 kW/m2. With increasing heat flux, however, the enhancement was suppressed due to vigorous bubble generation. Fouling on the heat transfer surface was not observed during the course of this study. Optimum quantity and type of CNTs and their dispersion should be examined for their commercial application to enhance nucleate boiling heat transfer in many applications.  相似文献   

13.
In this study, pool boiling heat transfer coefficients (HTCs) and critical heat fluxes (CHF) are measured on a smooth square flat copper heater in a pool of pure water with and without carbon nanotubes (CNTs) dispersed at 60°C. Tested aqueous nanofluids are prepared using multi-walled CNTs whose volume concentrations are 0.0001, 0.001, 0.01, and 0.05%. For the dispersion of CNTs, DISPERBYK 184 is used in distilled water. Pool boiling HTCs are taken from 10 kW/m2 to critical heat flux for all tested fluids. Test results show that the pool boiling HTCs of the nanofluids are lower than those of pure water in entire nucleate boiling regime. On the other hand, critical heat flux is enhanced greatly showing up to 150% increase at the CNT concentration of 0.001% as compared to that of pure water. This is related to the change in surface characteristics by the deposition of CNTs. This deposition makes a thin CNT layer on the surface and the active nucleation sites of the surface are decreased due to this layer. The thin CNT layer acts as the thermal resistance and also decreases the bubble generation rate resulting in a decrease in pool boiling HTCs. The same layer, however, decreases the contact angle on the test surface and extends the nucleate boiling regime to very high heat flux range and reduces the formation of large vapor canopy at near CHF. Thus, a significant increase in CHF results.  相似文献   

14.
利用计算流体力学软件Fluent,采用数值模拟方法究了幅值不同的两种波纹管传热状况,发现幅值为4mm的波纹管的传热状况优于幅值3mm波纹管的传热状况,这是由前者管内湍流强度高于后者所致.同时,回归了两波纹管的换热准则方程,为波纹管的校核计算及工程应用提供依据.  相似文献   

15.
Experiments were performed on the convective boiling heat transfer in horizontal minichannels using propane. The test section was made of stainless steel tubes with inner diameters of 1.5 mm and 3.0 mm and lengths of 1000 mm and 2000 mm, respectively, and it was uniformly heated by applying an electric current directly to the tubes. Local heat transfer coefficients were obtained for a heat flux range of 5–20 kW m−2, a mass flux range of 50–400 kg m−2 s−1, saturation temperatures of 10, 5, and 0°C and quality ranges of up to 1.0. The nucleate boiling heat transfer contribution was predominant, particularly at the low quality region. Decreases in the heat transfer coefficient occurred at a lower vapor quality with a rise of heat flux and mass flux, and with a lower saturation temperature and inner tube diameter. Laminar flow appeared in the minichannel flows. A new boiling heat transfer coefficient correlation that is based on the superposition model for propane was developed with 8.27% mean deviation. This paper was recommended for publication in revised form by Associate Editor Jae Young Lee Jong-Taek Oh received his B.S., M.S. and Ph.D. degrees in Refrigeration Engineering from Pukyong National University, Korea. Dr. Oh is currently a Professor at Department of Refrigeration and Air Conditioning Engineering, Chonnam National University at Yeosu, Korea. Dr. Oh’s research interests are in the area of boiling and condensation heat transfer and pressure drop of refrigerants with small tubes, heat pump and transportation refrigeration.  相似文献   

16.
In this paper, an experimental study of the absorption process of water vapor into lithium bromide solution is reported. For the purpose of developing high performance absorption chiller/heater utilizing lithium bromide solutions as working fluid, it brings the largest contribution to improve the performance of the absorber which normally requires the largest surface area among the four heat exchangers of the system. The performance of four types of absorber tubes; bare tube, bumping bare tube, floral tube and twisted floral tube, have been experimentally evaluated. The results show that the floral tube and the twisted floral tube show about 40% higher heat and mass transfer performance than the bare tube which is conventionally used in absorbers.  相似文献   

17.
Technique and procedure for measurements of the heat transfer coefficient in experimental research of heat transfer at the liquid-solid interface are submitted. The technique enables to use the metal film applied to the surface both to heat the surface and to measure the surface temperature, thus minimizing uncontrolled heat loss and reducing the measurement uncertainty.  相似文献   

18.
We investigated the effect of surface roughness on pool boiling heat transfer in subcooled water-CuO nanofluid. Experiment was performed using 0.1% volumetric water-CuO nanofluid and pure water for comparison. The following results were obtained. The heat flux tended to increase as the liquid subcooling increased in the region of low wall superheat. However, the effect of liquid subcooling gradually decreased as the wall superheat increased. The heat flux of pure water and nanofluid was almost similar in the region of low wall superheat. As the wall superheat increased, however, the heat flux of nanofluid decreased compared to that of pure water. This was attributable to the fact that the nanoparticles mixed with pure water reduced the heat flux by deteriorating boiling on the heat transfer surface. The heat flux increased as the surface roughness increased in the pure water, but the effect of surface roughness on heat flux was unclear in the nanofluid. This was attributable to the decreased difference of surface roughness, which was caused by the coating or deposition of nanoparticles on the heat transfer surface during the experiment.  相似文献   

19.
Both the mass flow rate and heat transfer characteristics are significant factors to the flow behavior of the high-pressure air; however, they are not easy to be obtained by analytical model during discharge and charge processes. In this paper, the mass flow rate characteristics of high-pressure pneumatic components (HPPC) are measured by a compounding approach; two components under test with the same geometry and dimension are needed to be connected in series. Both the effective cross-section area and critical pressure ratio of HPPC are determined accurately, and only the pressure variation and the steady-state temperature of air in the chamber are utilized. The compared results between experimental and simulation data show that the accuracy of the measured effective cross-section area and critical pressure ratio of the HPPC is high when the sonic and adiabatic releasing time is less than 2 s. And then, a new combined method of calculating the heat transfer coefficient during discharging and charging processes for the high-pressure air is proposed. The computational fluid dynamics (CFD) method is used to illustrate the intensity of heat exchange between the high-pressure air inside the chamber and outer atmosphere. The dynamic flow behavior is analyzed based on the tested flow rate characteristics of HPPC, mixed heat transfer theory and numerical results. The results show that the heat-transfer coefficient during charge process is much greater than discharge process, and the forced convection heat exchange happened owing to the strong “air agitation” during the charge process. The experimental results also validate that the proposed method of calculating the transient heat transfer coefficient is more reasonable to describe the heat transfer behavior. The findings may also have general implication in the development of the design and analysis of the high-pressure pneumatic system.  相似文献   

20.
In this study, external condensation heat transfer coefficients (HTCs) of six flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of 39°C on a 1023 fpm low fin and Turbo-C tubes. All data were taken under the heat flux of 32- 116 and 42-142 kW/m2 for the Iow fin and Turbo-C tubes respectively. Flammable refrigerants’ data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to 30% higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz’ correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of 7.3%. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号