首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface wettability trends, and blood component adhesion of some cellulose acetate phthalate/hydroxypropyl cellulose blend films are analyzed in view of adapting the system to biomedical applications. The results show that intermediate blend compositions of the corresponding films influence the surface tension parameters—controlled by the interactions occurring in the system. Increasing hydrophobicity and, implicitly, decreasing the polar surface tension components, are correlated with the adhesion/cohesion of blood components and plasma proteins. Thus, the work of spreading proteins on the hydrophobic blend surfaces indicated that albumin is not absorbed preferentially, while fibrinogen is characterized by a higher degree of adhesion on the surfaces, and also that selective adsorption of plasma proteins modifies blood compatibility. In addition, the obtained results and the ascertained antimicrobial activity of the studied blends contribute to the development of new applications in the biomedical field. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41932  相似文献   

2.
Interface reactions between polyimides and metal/metal oxide surfaces are proposed on the basis of their acid-base strengths. These hypothetical interface reactions are discussed for the purpose of understanding adhesion at these interfaces. Some experimental data are presented to support the hypothesis as it relates to polyimide adhesion to these surfaces. The purpose of this paper, however, is not to present firm conclusions, but to initiate discussion of the concepts within the adhesion community.  相似文献   

3.
Polyimides are commonly used as organic passivation layers for microelectronic devices due to their unique combination of properties such as low dielectric constant, high thermal stability, excellent mechanical properties and superior solvent resistance. Unfortunately, polyimides are well known to be difficult to bond to other materials, especially to epoxy resins. Many surface treatments have been developed to increase epoxy–polyimide adhesion. These treatments include exposure to ion beams, plasmas and chemical solutions. The goal of our research was to relate surface reactivity of epoxy and polyimide resins to the strength of epoxy–polyimide interfaces. The surface reactivity of four polyimides was studied and quantified using contact angle measurements, flow microcalorimetry (FMC), Fourier transform infrared (FT-IR) spectroscopy (using an attenuated total reflection (ATR) accessory) and X-ray photoelectron spectroscopy (XPS). Several ways of analyzing contact angles were tried and only a weak correlation between the polar component or the acid–base components of the surface free energy with the critical interfacial strain energy release rate (i.e., the interfacial fracture strength) was observed. FMC results suggest that the strength of epoxy–polyimide interfaces is related to the molecular interactions between the curing agent and polyimide. The molecular interactions between the curing agent and polyimide surfaces were found to be either greater than epoxy and polyimide interactions or more irreversible. Therefore, the curing agent (2,4-EMI) is thought to play a critical role in controlling adhesion strength.  相似文献   

4.
A polyimide based on alicyclic units, such as epiclon (5-(2,5-dioxotetrahydrofurfuryl)-3-methyl-3-cyclohexene-1,2-dicarboxylic acid anhydride), was investigated from the point of view of its surface features to check their suitability for cell culture applications. Atomic force microscopy data revealed fractal and isotropic surfaces with nanoscale roughness and peaks placed at much smaller distances comparing to the cell size scale, favoring a good compatibility of the synthesized material with the biological medium, particularly after plasma treatment. Surface tension properties were determined in order to evaluate the interactions at the bio-interface affecting the adherence behavior of cell-binding proteins to the sample surface. In vitro experiments regarding the cytocompatibility and population tendency reveal that polyimide allows cells to adhere and to proliferate onto the surface. These tests indicate that the studied epiclon-based polyimide is not cytotoxic and can be recommended as good candidate for cell culture substrate in tissue engineering, especially after plasma treatment.  相似文献   

5.
This study examines the effect of thioether sulfur in the polyimide backbone, polyimide Tg, and adherend surface pre-treatment on aluminum bond strengths as determined with both peel and wedge specimens. Surface pretreatment and Tg had more of an effect on peel strength than the presence of sulfur in the polyimide backbone. NaOH etching and comparatively low Tg polyimides combined to produce the highest peel strengths. Together, these factors combined the removal of surface oxide from the adherend with a flexible polyimide which could better relieve stress during testing. Little difference was observed between the peel strengths of sulfur and non-sulfur containing polyimides, and no oxidation of sulfur was observed in the peel samples. NaOH etching also caused both wedge and peel specimens to fail more within the polyimide than in the oxide layer of the adherend. Thus, the NaOH etch appeared to increase interfacial adhesion between the aluminum and the polyimide. The low Tg polyimides performed better than the high Tg polyimides in the wedge test, with the polyimide derived from 4,4'-bis(3,4-dicarboxyphenoxy) diphenyl sulfide dianhydride and 4,4'-diaminodiphenyl ether (BDSDA/ODA) performing the best. This observation could be due to a metal-sulfur interaction since oxidized sulfur was surprisingly observed on the failed surfaces of these bonds regardless of the environment or surface pretreatment. A metal component in the aluminum alloy rather the aluminum is believed to promote the sulfur oxidation.  相似文献   

6.
3,5-diamino-1,2,4-triazole(DATA) was used as a diamine to introduce triazole in the backbone of polyimides. The mol% of DATA in the diamines was varied and the effects of triazole content on the mechanical properties, thermal properties and adhesion strength between polyimides and copper were investigated. Polyisoimides were also synthesized to prevent the copper diffusion into polyimide layer observed in poly(amic acid) precursors. The properties of polyimides prepared via polyisoimide including the adhesion strength to copper were examined. The locus of failure of polyimide/Cu joints was analyzed by XPS. The mechanical properties of BOD-PI did not vary with increasing the DATA content from 0 mol% to 20 mol% in diamines but the adhesion strength of BOD-PI/Cu joints increased with increasing the DATA content.  相似文献   

7.
Polyimides containing pyridine as well as triazole were synthesized. The incorporation of pyridine or triazole improves the adhesion between polyimides and sputter-deposited copper. 4,4′-oxydianiline (ODA) was separately mixed with 2,6-diaminopyridine (DAP) and 3,5-diaminol,2,4-triazole (DATA), to form co-diamines. A series of polyimides was obtained in two steps by reacting co-diamines and 3,3′,4,4′-pyromellitic dianhydride (PMDA). The structure of the polyimides was verified by Fourier Transform Infrared spectroscopy (FT-IR) and Nuclear Magnetic Resonance (NMR). Their thermal, mechanical and dielectric properties were investigated. The rigidity of both pyridine and triazole moieties influences the coefficient of thermal expansion, the tensile strength and the elastic modulus of the films. The adhesion strength of the sputter-deposited copper to polyimide films was proportional to the functional group content. At a molar ratio of DAP to ODA of 1 : 6, the 90°-peel strength of copper/polyimide laminates reached a maximum of 990 J/m2. At a molar ratio of DATA to ODA of 1 : 6, the 90°-peel strength of copper/polyimide laminates reached a maximum of 696 J/m2. The corresponding polyimide films exhibited a good balance in thermal, mechanical and dielectric properties, as did the PMDA-ODA film. The locus of failure (LOF) examination by X-ray photoelectron spectroscopy (XPS) indicated that the LOF of laminates with low to moderate adhesion was mostly at the interface near the polyimide; the LOF of laminates with high adhesion was mostly in the polyimide. The N1s core level spectra of the delaminated copper surface revealed a peak at 398.4 eV in copper/polyimide with DAP/ODA ratio of 1 : 6 and a peak at 398 eV in copper/polyimide with DATA/ODA ratio of 1 : 6, perhaps due to the formation of N-Cu charge-transfer complex. This complex substantially promoted the adhesion between sputter-deposited copper and polyimides.  相似文献   

8.
We have used an extreme environmental stress test to study the adhesion of a thin sputtered copper film (0.5 μm) to flexible polyimide (PI) substrates between 25 and 125 μm thick. The polyimide types include Kapton (PMDA-ODA) and Upilex (BPDA-PDA). When there was no surface modification on the PI, the adhesion of the film to Upilex type S was better than the adhesion to Upilex type R or Kapton type HN. When the polymer surface was treated with a simple AC nitrogen glow discharge (NGD), there was an improvement in the adhesion of the film to each of these polyimides. This improvement in adhesion became apparent after the film/substrate combination was subjected to either boiling water or steam for 30 min or more; the difference became quite clear after 2 h. A simple tape test was used to quickly estimate a relative adhesion strength. In order to compare the effect of our AC NGD treatment with other substrate surface modification methods, we used it to improve the coupling of a thick (> 10 μm) layer of copper (via a thin intermediate chromium layer) to a rigid PI substrate, formed from spin coating its precursor onto a silicon wafer. Peel test results were within a factor of 2-3 of the corresponding results obtained with a radio frequency (RF) plasma and ion beam treatments.  相似文献   

9.
Novel diamine monomers containing fluorine and phosphine oxide - bis(3-aminophenyl)-3,5-bis(trifluoromethyl)phenyl phosphine oxide (mDA6FPPO) and bis(3-aminophenyl)-4-(trifluoromethyl)phenyl phosphine oxide (mDAFPPO) - were utilized to prepare polyimides with dianhydrides such as 6FDA, BTDA or ODPA by the conventional two-step route, i.e. preparation of poly(amic acid) followed by solution imidization. The polyimides were characterized by FT-IR, NMR, DSC, and intrinsic viscosity measurements. The adhesion property of the polyimides was evaluated via a peel test with bare Cu foil, as well as silane/Cr-coated Cu foil, and failure surfaces were analyzed by SEM/EDX to elucidate the failure mechanism. The results were compared with those from the polyimides prepared from bis(3-aminophenyl)phenyl phosphine oxide (mDAPPO) containing only the phosphine oxide moiety, 1,1-bis(4-aminophenyl)-1-phenyl-2,2-trifluoroethane (3FDAm) containing only the fluorine moiety, and a commercial 3,3′-diaminodiphenylsulfone (mDDS). The polyimides with 3FDAm exhibited the highest T g, followed by the mDAPPO-, mDA3FPPO-, and mDA6FPPO-based polyimides, but the mDAPPO-based polyimides exhibited the highest adhesion properties, followed by mDA3FPPO, mDA6FPPO, mDDS, and 3FDAm, which is attributed to the phosphine oxide and fluorine moieties.  相似文献   

10.
Non-solution and electrochemical treatments in preparation for adhesive bonding of titanium have been studied. Polymeric materials, LaRC TPI-2000TM, LaRC PETI-5TM, and AurumTM polyimides were deposited onto titanium-6Al-4V surfaces via plasma spraying. The plasma-sprayed surfaces were characterized using infrared, solid state NMR, and surface-sensitive analytical methods. The chemical nature of plasma-sprayed polymers is equivalent to that for powdered materials. The durability of titanium, adhesively bonded with a polyimide adhesive, was investigated by immersing wedge-type specimens in boiling water. Crack length and the mode of failure were used to assess durability. The determination of the failure mode was accomplished using surface-sensitive analytical methods. Surface treatments using plasma-sprayed LaRC-type polyimides result in good durability as evidenced by minimal crack growth for wedge specimens and by failure in the adhesive (cohesive failure).  相似文献   

11.
In the past two decades many attempts have been made to relate surface and interfacial parameters with the blood compatibility of polymeric surfaces. It is however doubtful if by a single parameter the behaviour of blood on a surface can be predicted. Two major aspects of blood compatibility—the prevention of platelet adhesion and the deactivation of the intrinsic coagulation system are determined by the measure and nature of competitive blood protein adsorption on the foreign surface. The adhesion of blood platelets is promoted by adsorbed fibrinogen and gamma globulin, while adsorbed albumin inhibits platelet adhesion. Heparinised surfaces do not adsorb fibrin and consequently no adhesion of platelets takes place. Other surfaces with low platelet adhesion are the hydrogels, certain block copolyetherurethanes, polyelectrolyte complexes and biolised proteins. Heparinised surfaces of the cationically bonded type inhibit the intrinsic coagulation as well, however this may be due to unstable coatings and heparin leakage. In the authors laboratory a synthetic heparinoid was prepared with the structure - [CH2 - C(CH3 NHSO3 Na - C(H) COONa - CH2 -] x? with M?w = (7.5 /pm 1.0) × 105 and an in vivo anticoagulant activity of 50% of heparin. Its coatings on PVC, using tridodecylmethyl-ammonium chloride as a coupling agent, are stable in plasma and salt solutions and provide surfaces which show negligible platelet adhesion and a strong inhibition of the intrinsic coagulation on contact with blood. Similar results were found with polydimethylsiloxane surfaces coated with this heparinoid.  相似文献   

12.
The adhesion mechanism between polyimides and aromatic thermosetting copolyester (ATSP) involved in the solid‐state bonding technique using submicrometer ATSP coatings was evaluated. The adhesion strength at the interface between ATSP and polyimide is strongly related to the diffusion of ATSP into the polyimide base layer. We used dynamic secondary ion mass spectrometry to study the interface width between deuterated ATSP and polyimides and found that the interface between ATSP and poly(4,4′‐diphenylether pyromellitimide) (PMDA‐ODA) is wider than the interface between ATSP and poly(p‐phenylene biphenyltetracarboximide) (BPDA‐PPD) because of the less rigid chain in the PMDA‐ODA. By partially curing both polyimides, the interface width was greatly increased, which could lead to an improved adhesion at the interface between polyimide BPDA‐PPD and ATSP. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3843–3856, 2004  相似文献   

13.
Novel polyimides were synthesized from 1‐[3′,5′‐bis(trifluoromethyl)phenyl] pyromellitic dianhydride (6FPPMDA) by a conventional two‐step process: the preparation of poly(amic acid) followed by solution imidization via refluxing in p‐chlorophenol. The diamines used for polyimide synthesis included bis(3‐aminophenyl)‐3,5‐bis(trifluoromethyl)phenyl phosphine oxide, bis(3‐aminophenyl)‐4‐trifluoromethylphenyl phosphine oxide, and bis(3‐aminophenyl)phenyl phosphine oxide. The synthesized polyimides were designed to have a molecular weight of 20,000 g/mol by off‐stoichiometry and were characterized by Fourier transform infrared, NMR, differential scanning calorimetry, and thermogravimetric analysis. In addition, their intrinsic viscosity, solubility, water absorption, and coefficient of thermal expansion (CTE) were also measured. The adhesion properties of the polyimides were evaluated via a T‐peel test with bare and silane/Cr‐coated Cu foils, and the failure surfaces were investigated with scanning electron microscopy. The 6FPPMDA‐based polyimides exhibited high glass‐transition temperatures (280–299°C), good thermal stability (>530°C in air), low water absorption (1.46–2.16 wt %), and fairly low CTEs (32–40 ppm/°C), in addition to good adhesion properties (83–88 g/mm) with silane/Cr‐coated Cu foils. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1801–1809, 2005  相似文献   

14.
Several polyimide resins were tested as possible scratch resistant coatings for aluminosilicate glass centrifuge tubes. Tubes with siloxane pretreatments provided the best adhesion between the polyimide and glass surface. Resins synthesized with an alkoxysilane group incorporated into the polyimide chain also showed improved adhesion, but the results were not as significant as when the pretreatment was used. Elastic recovery and effective Young's modulus of the polyimide coatings were calculated from nano-scratching. The results indicate that polyimides with a lower modulus, and higher elastic recovery, protected the glass surface best, exhibiting compression of the coating layer. An example was poly-4-4'-oxydiphenylene pyromellitimide (PMDA-ODA), whereas the coatings with a high effective Young's modulus and low elastic recovery ruptured. An example of a failed coating was poly-4,4'-carbonyldiphenylene 3,3',4,4'-biphenylenetetracarboximide (BPDA-DABP) which had low amount of elastic recovery, high effective Young's modulus and a large amount of flaking during macroscratch testing.  相似文献   

15.
沈乐欣  胡应模  伊洋  朱建华  刘洋 《广州化工》2009,37(8):21-24,37
含硅聚酰亚胺由于具有可溶性、粘合性、吸湿性以及电绝缘性等方面的优势,近年来逐渐成为聚酰亚胺改性研究的热点。本文主要综述了近年来主链型含硅聚酰亚胺、侧链型含硅聚酰亚胺以及聚酰亚胺含硅无机复合材料的合成方法及其改性性能,并对含硅聚酰亚胺的研究发展进行了展望。  相似文献   

16.
Several polyimide resins were tested as possible scratch resistant coatings for aluminosilicate glass centrifuge tubes. Tubes with siloxane pretreatments provided the best adhesion between the polyimide and glass surface. Resins synthesized with an alkoxysilane group incorporated into the polyimide chain also showed improved adhesion, but the results were not as significant as when the pretreatment was used. Elastic recovery and effective Young's modulus of the polyimide coatings were calculated from nano-scratching. The results indicate that polyimides with a lower modulus, and higher elastic recovery, protected the glass surface best, exhibiting compression of the coating layer. An example was poly-4-4′-oxydiphenylene pyromellitimide (PMDA-ODA), whereas the coatings with a high effective Young's modulus and low elastic recovery ruptured. An example of a failed coating was poly-4,4′-carbonyldiphenylene 3,3′,4,4′-biphenylenetetracarboximide (BPDA-DABP) which had low amount of elastic recovery, high effective Young's modulus and a large amount of flaking during macroscratch testing.  相似文献   

17.
Summary A series of cyano-containing polyimides were synthesized from 2,6-bis(4-amino- phenoxy)benzonitrile and some aromatic dianhydride monomers by solution polycondensation. The poly(amic acid) films could be obtained by solution-cast from N-methyl-2-pyrrolidinone solutions and thermally converted into tough polyimide films. Structure and physical properties of thin films of those polyimides were measured by FTIR, TGA, dynamic mechanical analysis and LCR hitester et al. Results showed that the polyimides prepared from 2,6-bis(4-aminophenoxy)- benzonitrile and 2,2-bis[4-(3,4-dicarboxyphenoxy)phenyl]propane dianhydride or 4,4’-(hexafluoropropylidene)diphthalic anhydride exhibited more excellent energy-damping characteristic and excellent solubility in NMP, DMF, DMAc, DMSO, THF and CHCl3, whereas the polyimides from 2,6-bis(4-aminophenoxy)benzonitrile and 3,3’,4,4’-biphenyltetracarboxylic dianhydride or Pyromellitic dianhydride were insoluble in polar and nonpolar organic solvents. All polyimides indicated higher glass transition temperatures, excellent thermal stability and tensile properties. Incorporating a nitrile group into the polyimide backbone would enhance the dielectric constant of the polyimide films.  相似文献   

18.
Use of polyimides with thermal coefficients of expansion comparable to that of the underlying substrate is critical to achieving low stress in microelectronic packaging applications. Photosensitive polyimides are finding increased use because of their significant reduction in device processing steps. A negative working photosensitive polyimide, based on the BPDA/PPD backbone, has been synthesized that incorporates these key features. The polyimide exhibits excellent photosensitivity and lithographic behavior, while retaining many thermal and physical properties of the polymer framework.  相似文献   

19.
Polyimide has excellent heat resistance, dielectric properties, and mechanical properties, and has a wide range of applications in aerospace, electronic packaging, and insulating materials. However, traditional polyimide is difficult to melt and dissolve, and its processing is difficult, which has become an important reason limiting its practical application. Therefore, the development of high temperature-resistant thermoplastic polyimide has become a research hotspot. To prepare high temperature-resistant thermoplastic polyimide materials, a series of thermoplastic polyimides was successfully prepared using 3,3′,4,4′-benzophenone tetracarboxylic dianhydride, 3,3′-diaminodiphenylsulfone, 2,3′,3,4′-benzophenone tetracarboxylic dianhydride, 9,9-bis(4-aminophenyl)fluorene, and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane via a two-step method. The effects of non-coplanar structure and bulky groups on the solubility, processability, and thermal properties of polyimide were studied. The structure, heat resistance and thermoplasticity of polyimide were characterized via various methods. The results show that the glass transition temperature of the prepared thermoplastic polyimide is between 292 and 302°C, and has excellent thermal resistance. The processing viscosity of polyimides is as low as 9210 Pa.s, and it has a certain degree of processing properties. It may be designed to be used in high temperature-resistant hot melt adhesives for structural components, high temperature-resistant melt processing resins, or thermoplastic composite materials used in the field of aerospace in the future.  相似文献   

20.
Polyimides containing triazole or imidazole functionalities have been synthesized. Poly(3,3',4,4'-benzophenone tetracarboxylic dianhydride-3,5-diamino-1,2,4-triazole) (BTDA-TADA) contains triazole groups as repeat units and poly(4,4'-oxydiphthalic anhydride-1,3-aminophenoxybenzene-8-azaadenine) (ODPA-APB-8-azaadenine) consists of triazole (8-azaadenine) groups as the end caps. While the BTDA-TADA polyimide starts to decompose at 350°C, the ODPA-APB-8-azaadenine polyimide is thermally stable at 400°C. The peel strength of copper to BTDA-TADA polyimide without surface modification is 200-400 J/m2. For the adhesion of polyimide to copper, ODPA-APB-8-azaadenine polyisoimide (1.0 μm) and poly(pyromellitic dianhydride-oxydianiline) (20 μm) were coated onto the copper substrate and then the two layers were cured together to polyimides at 400°C. Peel strengths of 500-800 J/m2 were obtained. The failure of the copper/polyimide interface by peeling either the copper or the polymer layer occurred in the near-interface region of the polymer. Both PI/Cu and Cu/PI adhesion was enhanced due to the formation of Cu-polyimide complexes. In the case of PI/Cu adhesion, the polymer chain flexibility of ODPA-APB-8-azaadenine polyimide also plays a significant role in improving adhesion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号