首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
《Journal of power sources》2006,158(1):213-224
A detailed dynamic model incorporating geometric resolution of a molten carbonate fuel cell (MCFC) with dynamic simulation of physical and electrochemical processes in the stream-wise direction is presented. The model was developed using mass and momentum conservation, electrochemical and chemical reaction mechanisms, and heat-transfer. Results from the model are compared with data from an experimental MCFC unit. Furthermore, the model was applied to predict dynamic variations of voltage, current and temperature in an MCFC as it responds to varying load demands. The voltage was evaluated using two different approaches: one applying a model developed by Yuh and Selman [C.Y. Yuh, J.R. Selman, The polarization of molten carbonate fuel cell electrodes: I. Analysis of steady-state polarization data, J. Electrochem. Soc. 138 (1991) 3642–3648; C.Y. Yuh, J.R. Selman, The polarization of molten carbonate fuel cell electrodes: II. Characterization by AC impedance and response to current interruption, J. Electrochem. Soc. 138 (1991) 3649–3655] and another applying simplified equations using average local temperatures and pressures. The results show that both models can be used to predict voltage and dynamic response characteristics of an MCFC and the model that uses the more detailed Yuh and Selman approach can predict those accurately and consistently for a variety of operating conditions.  相似文献   

3.
This paper reports a nonlinear fuzzy modeling study of a molten carbonate fuel cell (MCFC) stack by an identification method. MCFC is a complex nonlinear, multi-input and multi-output (MIMO) system that is hard to model by traditional methodologies. The Takagi–Sugeno (T–S) fuzzy model is suitable to model a large class of nonlinear MIMO system. In this paper, a MIMO T–S fuzzy model is used to represent MCFC. An identification method is used to determine both the nonlinear parameters of the antecedents and the linear parameters of the rules consequent in the T–S fuzzy model. The simulation tests reveal that obtained T–S fuzzy model using the identification method can efficiently approximate the static and dynamic behavior of a MCFC stack. Furthermore, based on this proposed T–S fuzzy model, valid control strategy studies such as predictive control, robust control can be developed.  相似文献   

4.
A simple mathematical model, based on the basic chemical reactions and mass transfer, was developed to predict some important characteristics of molten carbonate fuel cells (MCFC) with LiNaCO3 and LiKCO3 electrolytes for steady state operating conditions. The parallel and cross gas flow patterns were analyzed. Model simulates polarization characteristics, the effect of temperature, pressure and electrolyte type on the cell performance, various losses in the cell and gas flow rate changes through cell. The effect of fuel utilization on the cell potential and efficiency was also analyzed. Model predicts a better performance for the MCFC with LiNaCO3 electrolyte and the cross flow pattern, in general. Results show a strong influence of the operating temperature on the cell potential at temperatures below 625 °C, where cell potential increases rapidly with increasing temperature. Above this temperature, however, the cell potential has almost a steady asymptotic profile. The model predicts cell efficiency steadily improving with increase in fuel utilization. The cell potential decreases almost linearly with increase in the fuel utilization percentage for both electrolytes. Models results show a stronger dependency of the cell potential on the operating pressure than that described by the Nerst equation which is in line with fact that the real variations in the cell potential can be higher due to decreased various losses.  相似文献   

5.
A site-specific fuel cell cogeneration study was conducted. A molten carbonate fuel cell (MCFC) system, sized at a nominal 25 MW (d.c.) to use an available by-product hydrogen stream, was compared with the alternative of purchased electricity and the use of natural gas to produce steam. The economic analysis objectives were to determine; the savings due to the reduced amount of purchased energy; the cost/benefit ratio; and the payback period for the MCFC cogeneration system. Another objective was to determine if the high capital cost of the first prototype MCFC plant would require a commercialization subsidy to make it attractive to an industrial owner. It was found that a commercialization subsidy would be required for the initial high cost prototype plant, but this technology promises an energy utilization of 84% of the input fuel heating value which represents a strong incentive for commercialization.  相似文献   

6.
基于加权残值法的高温燃料电池温度分布特性的数值分析   总被引:3,自引:0,他引:3  
加权残值法是一种可以直接从偏微分方程中求得近似解的数学方法。通过对熔融碳酸盐燃料电池(MCFC)内部传热传质过程的热力学性能分析,在质量守恒和能量守恒的基础上建立了MCFC温度动态分布的数学模型,并采用加权残值法对其进行求解分析。确定了满足模型边界条件的试函数,以三次正交多项式为基函数,利用加权残值法中的迦辽金法,结合Matlab工具得到MCFC温度的动态分布特性曲线。分析结果表明,燃料电池内部各点温度在空间分布上有很大差异;当供给燃料电池的燃料流量和氧化剂流量变化时,所引起的温度动态特性是复杂的。图3参5。  相似文献   

7.
The mathematical model of the Molten Carbonate Fuel Cell (MCFC) is presented. The new approach for modeling the voltage of MCFC is proposed. Electrochemical, thermal, electrical and flow parameters are collected in the 0-D mathematical model. The aim was to combine all cell working conditions in as a low number of factors as possible and to have the factors relatively easy to determine. A validation process for various experimental data was made and adequate results are shown. The presented model was validated for various fuel mixtures in relatively wide ranges of parameters. A distinction is made between the “design-point” and “off-design operation”.  相似文献   

8.
In recent years, there has been increasing interest in fuel cell hybrid systems. In this paper, a novel multi-generation combined energy system is proposed. The system consists of a molten carbonate fuel cell (MCFC), a thermally regenerative electro-chemical cycle (TREC), a thermo photovoltaic cell (TPV), an alkaline electrolyzer (AE) and an absorption refrigerator (AR). It has four useful outputs, namely electricity, hydrogen, cooling and heating. The overall system is thermodynamically modeled in a detailed manner while its simulation and modeling are done through the TRNSYS software tool. Power output, cooling-heating and produced hydrogen rates are determined using energetic and exergetic analysis methods. Results are obtained numerically and plotted. The maximum power output from the system is 16.14 kW while maximum energy efficiency and exergy efficiency are 86.8% and 80.4%,. The largest exergy destruction is due to the MCFC.  相似文献   

9.
In this paper a generalized model, based on system-level approach, for predicting the High Temperature Fuel Cells (HTFCs) behavior and performance is presented.The system-level model allows to forecast the HTFC performance under different operating conditions (cell temperature, anode off-gas recirculation, reactants temperatures, fuel and oxidant utilization factors, etc.) and cell design (tubular and planar configurations and with co-flow, counter-flow and cross-flow arrangements).Mass and energy balances are solved by considering both the electrochemical (i.e. electro-oxidation of hydrogen) and thermochemical reactions (i.e. reforming and shifting reactions) which occur in the anode and cathode sides and by applying different equations systems to take into account the type of fuel cell (MCFC or SOFC).The ability of the proposed model in the HTFCs performance prediction is pointed out by the model validation carried out by using experimental data and by analyzing the impact of the model calibration parameters on the cell voltage calculation carried out by means of a sensitivity analysis.Numerical results show that the model allows to characterize the behavior of the HTFCs with a good approximation so, thanks to the simplicity of the simulation procedure and to the small computational time efforts, it can be a useful tool for predicting the performance of hybrid power plants or more complex systems in which the fuel cell is one of the main components.  相似文献   

10.
This study is basically composed of two sections. In the first section, a CFD analysis is used to provide a better insight to molten carbonate fuel cell operation and performance characteristics at very high current densities. Therefore, a mathematical model is developed by employing mass and momentum conservation, electrochemical reaction mechanisms and electric charges. The model results are then compared with the available data for an MCFC unit, and a good agreement is observed. In addition, the model is applied to predict the unit cell behaviour at various operating pressures, temperatures, and cathode gas stoichiometric ratios. In the second section, a thermodynamic model is utilized to examine energy efficiency, exergy efficiency and entropy generation of the MCFC. At low current densities, no considerable difference in output voltage and power is observed; however, for greater values of current densities, the difference is not negligible. If the molten carbonate fuel cell is to operate at current densities smaller than 2500 A m−2, there is no point to pressurize the system. If the fuel cell operates at pressures greater than atmospheric pressure, the unit cell cost could be minimized. In addition, various partial pressure ratios at the cathode side demonstrated nearly the same effect on the performance of the fuel cell. With a 60 K change in operating temperature, almost 10% improvement in energy and exergy efficiencies is obtained. Both efficiencies initially increase at lower current densities and then reach their maximum values and ultimately decrease with the increase of current density. By elevating the pressure, both energy and exergy efficiencies of the cell enhance. In addition, higher operating pressure and temperature decrease the unit cell entropy generation.  相似文献   

11.
熔融碳酸盐燃料电池的电气特性研究   总被引:1,自引:0,他引:1  
为了研究熔融碳酸盐燃料电池的电气特性,分析了熔融碳酸盐燃料电池单元的电化学过程机理,建立了基于电化学反应的熔融碳酸盐燃料电池电气模型,推导了熔融碳酸盐燃料电池平均电流密度与燃气利用率的关系,给出了采用电化学方程的熔融碳酸盐燃料电池电气特性的模型结构和算法,并进行了仿真研究和试验.试验结果表明:该模型结构简单、准确度高,可获得千瓦级熔融碳酸盐燃料电池的电气特性曲线.  相似文献   

12.
为有效回收熔融碳酸盐燃料电池产生的余热,提出一种由熔融碳酸盐燃料电池(MCFC)、两级并联温差发电器(TTEG)和回热器组合而成的混合系统模型.考虑MCFC电化学反应中的过电势损失和混合系统中的不可逆损失,通过数值分析得出混合系统的输出功率和效率的数学表达式,获得混合系统的一般性能特征,讨论MCFC电流密度与温差发电器...  相似文献   

13.
In a commercialized 300 kW molten carbonate fuel cell (MCFC) power plant, a univariate alarm system that has only upper and lower limits is usually employed to identify abnormal conditions in the system. Even though univariate alarms have already been adopted for system monitoring, this simple monitoring system is limited for using in an extended monitoring system for fault diagnosis. Therefore, based on principal component analysis (PCA), a recursive variable grouping method for a multivariate monitoring system in a commercialized MCFC power plant is presented in this paper. In terms of development, since a principal component analysis model that contains all system variables cannot isolate a system fault, heuristic recursive variable selection method using factor analysis is presented here. To verify the performance of the fault detection, real plant operations data are used. Furthermore, comparison between type 1 and type 2 errors for four different variable groups demonstrates that the developed heuristic method works well when system faults occur. These monitoring techniques can reduce the number of false alarms occurring on site at MCFC power plant.  相似文献   

14.
This study proposes a molten carbonate fuel cell (MCFC)-based hybrid propulsion system for a liquefied hydrogen tanker. This system consists of a molten carbonate fuel cell and a bottoming cycle. Gas turbine and steam turbine systems are considered for recovering heat from fuel cell exhaust gases. The MCFC generates a considerable propulsion power, and the turbomachinery generates the remainder of the power. The hybrid systems are evaluated regarding system efficiency, economic feasibility, and exhaust emissions. The MCFC with a gas turbine has higher system efficiency than that with a steam turbine. The air compressor consumes substantial power and should be mechanically connected to the gas turbine. Although fuel cell-based systems are less economical than other propulsion systems, they may satisfy the environmental regulations. When the ship is at berth, the MCFC systems can be utilized as distributed generation that is connected to the onshore-power grid.  相似文献   

15.
A novel combined molten carbonate fuel cell – steam turbine based system is proposed herein. In this cycle, steam is produced through the recovery of useful heat of an internal reforming MCFC and operates as work fluid in a Rankine cycle. Exergoeconomic analysis was performed, in order to verify the technical feasibility, including which components could be improved for greater efficiencies, as well as the cost of the power generated by the plant. A 10 MW MCFC was initially proposed, when the system reached 54.1% of thermal efficiency, 8.3% higher than MCFC alone, 11.9 MW of net power, 19% higher than MCFC alone, and an energy cost of 0.352 $/kWh. A sensitivity analysis was carried out and the parameters that most influenced on the cost were pointed out. The analysis pointed to the MCFC generation as the most impactful factor. By manipulating these values, it could be noted a significant power cost decrease, reaching satisfactory values to become economically feasible. The concept of economy of scale could be noticed in the proposed system, proving that a large-scale plant could be the focus of investment and public policies.  相似文献   

16.
In this paper, a novel syngas-fed combined cogeneration plant, integrating a biomass gasifier, a molten carbonate fuel cell (MCFC), a heat recovery steam generator (HRSG) unit, a Stirling engine, and an organic Rankine cycle (ORC), is introduced and thermodynamically analyzed to recognize its potentials compared to the previous solo/combined systems. For the proposed system, energetic, exergetic as well as environmental evaluations are performed. Based on the results, the gasifier and the fuel cell have a significant contribution to the exergy destruction of the system. Through a parametric study, the current density and the stack temperature difference are known as the main effective factors on the plant performance. Meanwhile, dividing the whole system into three sub-models, i.e., model (1): power production plant including the gasifier and MCFC without including Stirling engine, HRSG, and ORC unit, model (2): the cogeneration system without ORC unit, and model (3): the whole cogeneration system, an environmental impact assessment is carried out regarding CO2 emission. Considering paper as biomass revealed that maximum value of exergy efficiency is 50.18% with CO2 emissions of 28.9 × 10−2 t.MWh−1 which compared to the solo MCFC system indicates 28.40% increase and 13.3 × 10−2 t.MWh−1 decrease in exergy efficiency and CO2 emission, respectively.  相似文献   

17.
An in-situ sintered model of molten carbonate fuel cells (MCFCs) with environment-friendly aqueous matrices was proposed in order to optimize the performance of MCFC unit cell. The optimum assembly pressure range was settled based on the sintered model. Moreover, an environment-friendly aqueous α-LiAlO2 matrix was fabricated by a tape-casting process using distilled water as solvent and was applied into MCFC successfully. The obtained single drying green sheet had a thickness of 200–300 μm, no defects, and good workability. The microstructure of the α-LiAlO2 required in an MCFC was obtained using this method. In this work, the MCFC using the matrices was assembled and tested. The output power density could reach 149.2 mW cm−2 at the current density of 200 mA cm−2 when the assemble pressure was 7.01 MPa.  相似文献   

18.
The model of a new molten carbonate fuel cell (MCFC) system is established, in which multi-irreversibilities resulting from the anode, cathode, and ohm overpotentials are taken into account. Based on thermodynamic-electrochemical analysis and the semi-empirical equations available in literature, expressions of some main parameters such as the cell voltage, power output, efficiency and entropy production rate are derived. The influence of the gas inlet compositions on the electrode overpotentials is discussed in detail. It is found that there exist the optimal anode CO2 concentrations for different anode H2 concentrations. The performance characteristic curves of the MCFC system are represented through numerical calculation and the optimal operation regions of the main parameters are determined. Moreover, a new multi-objective function is used to further optimize the characteristics of the MCFC system, and consequently, the important problem of how to give consideration to both the efficiency and power output in the optimal operation region of the system is expounded.  相似文献   

19.
Hydrogen is rapidly turning into one of the essential energy carriers for future sustainable energy systems. The main reason for this is the possibility of off-peak excess power production and storage of renewable stations such as wind farms, photovoltaic plants, etc. For hydrogen (itself) or its sub-productions methanol, ammonia, etc. Such energy systems are so-called power2X technologies. For hydrogen and other biogases, using a fuel cell is a promising method for returning the fuel to the power grid or electric cars in the form of electricity. In this paper, a novel hybrid energy system consisting of a molten carbonate fuel cell (MCFC) and different options to generate hydrogen from the waste heat of the MCFC is investigated. The system consists of two scenarios of weather using proton exchange membrane electrolyzer (PEME) of vanadium chloride (VCL) cycle. The article presents a comprehensive thermodynamic, economic, and environmental analysis of the system optimized by tri-objective optimization (as an innovative optimization) methods. The aim of the optimization task here is to minimize the costs and emissions while maximizing efficiency. A parametric study is conducted to see the effect of different design parameters on the system's performance. Results demonstrate that fuel utilization factor, stack temperature, and current density have the most critical effect on the system performance. In addition, the system coupled with the VCL cycle exhibits better performance than the system with PEME. In addition, at the optimized point, the efficiency, cost rate, and emission become 69.28%, 3.73 ($/GJ), and 1.16 kg/kWh, respectively. In addition, the produced hydrogen in VCL and PEME are 585 kg/day and 293 kg/day respectively.  相似文献   

20.
This paper presents the work on the design and part-load operations of a hybrid power system composed of a pressurized molten carbonate fuel cell (MCFC) and a micro-gas turbine (MGT). The gas turbine is an existing one and the MCFC is assumed to be newly designed for the hybrid system. Firstly, the MCFC power and total system power are determined based on the existing micro-gas turbine according to the appropriate MCFC operating temperature. The characteristics of hybrid system on design point are shown. And then different control methods are applied to the hybrid system for the part-load operation. The effect of different control methods is analyzed and compared in order to find the optimal control strategy for the system. The results show that the performance of hybrid system during part-load operation varies significantly with different control methods. The system has the best efficiency when using variable rotational speed control for the part-load operation. At this time both the turbine inlet temperature and cell operating temperature are close to the design value, but the compressor would cross the surge line when the shaft speed is less than 70% of the design shaft speed. For the gas turbine it is difficult to obtain the original power due to the higher pressure loss between compressor and turbine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号