首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
直接以乳酸(LA)单体和聚乙二醇(PEG)为原料,通过直接熔融共聚法,合成了生物降解材料聚乳酸-聚乙二醇(PLEG),用特性粘数[η]、GPC、FFIR、^1H NMR、DSC等手段对其进行了系统的表征,发现不同的预聚方式存在一定的影响,LA和PEG直接进行一步预聚时相对分子质量较高,对药物缓释载体PLEG的合成较为有利。  相似文献   

2.
直接以乳酸(LA)单体和聚乙二醇(PEG)为原料,通过直接熔融共聚法,合成了生物降解材料聚乳酸-聚乙二醇(PLEG),用特性粘数[η]、GPC、FTIR1、H NMR、DSC和X-射线衍射等手段对其进行了系统的表征,发现许多因素对PLEG存在一定的影响,如不同的预聚方式时PLEG的组成不同、左旋乳酸(L-LA)获得的共聚物相对分子质量不如外消旋乳酸(D,L-LA)等。在此基础上,初步探讨了LA与PEG直接熔融共聚的反应机理。  相似文献   

3.
直接熔融聚合法合成生物降解材料PLEG研究Ⅴ反应机理   总被引:1,自引:0,他引:1  
直接以乳酸(LA)单体和聚乙二醇(PEG)为原料,通过直接熔融共聚法,合成了生物降解材料聚乳酸-聚乙二醇(PLEG),用特性粘数[η]、GPC、FTIR、1H NMR、DSC和X-射线衍射等手段对其进行了系统的表征,发现许多因素对PLEG存在一定的影响,如不同的预聚方式时PLEG的组成不同、左旋乳酸(L-LA)获得的共聚物相对分子质量不如外消旋乳酸(D,L-LA)等.在此基础上,初步探讨了LA与PEG直接熔融共聚的反应机理.  相似文献   

4.
聚乙二醇对聚乳酸的共聚改性研究   总被引:4,自引:1,他引:3  
以乳酸单体(LA)为原料,锌酸亚锡[Sn(Oct)2]为催化剂,按m[Sn(Oct)2]∶m(LA)=0.008∶1投料,在170℃、0.095 MPa下反应8 h,直接熔融缩聚合成PLA,其Mη(黏均摩尔质量)为12514.将PLA与PEG-400、PEG-600和PEG-800按m(PLA)∶m(PEG)=9∶1共聚合成系列PLEGs.用特性黏度、FT-IR、DSC、接触角测定等测试手段对其进行表征.结果表明:在系列PLEGs中,PEG-600和PLA共聚合成的PLEG的最高,可达28900.PEG-800和PLA共聚合成的PLEG接触角最小,为57.0°,表明其亲水性能最好.  相似文献   

5.
采用聚乙二醇(PEG)与乳酸反应,合成了端羟基乳酸预聚体(PLEG)。然后将PLEG与马来酸酐进行直接熔融缩聚得到改性聚乳酸(MPLA)。采用正交分析法探讨了原料比、反应温度、反应时间等工艺条件对MPLA相对分子质量的影响,并研究了MPLA的亲水性能、力学性能和在体外模拟生物环境中的降解特性。结果表明:马来酸酐与PLEG的质量比为1:15,在130 ℃反应15 h,MPLA的黏均相对分子质量最大为61564。相较于PLEG,MPLA的拉伸强度、弹性模量和断裂伸长率明显提高,亲水性得到改善。MPLA在体外模拟生物环境中的降解性能较好,其降解速率与马来酸酐含量有关。  相似文献   

6.
采用对苯二甲酸二甲酯(DNT)、1,4-丁二醇(BDO)、聚乙二醇(PEG)和乳酸(LA)合成了聚对苯二甲酸丁二醇酯(PBT)/PEG/LA可降解聚醚酯,通过纺丝制备了PBT/PEG/LA共聚物纤维。结果表明:红外光谱和核磁共振分析所得聚合物为PBT/PEG/LA。PBT/PEG/LA共聚物在50℃真空预干燥5 h,80℃干燥5 h,控制纺丝温度高于聚醚酯熔点15~30℃可顺利纺丝,纤维质量良好。随着拉伸倍数、热定型温度或时间的增加,纤维的断裂强度提高.断裂伸长率下降。LA摩尔分数高,有利于纤维降解,但纤维熔点和断裂强度相应下降。  相似文献   

7.
以氧化亚锡为催化剂(mc/mLA=0.005),以外消旋乳酸(D,L-LA)单体为原料,使其与数均相对分子质量为1000的聚乙二醇(PEG)共聚,通过直接熔融共聚法,在1650℃、70Pa下反应15h,合成了生物降解材料聚乳酸-聚乙二醇(PLEG)。发现最佳投料比为mu/mPEG=9时,可顺利地得到共聚产物PLEG,且其特性黏数[η]可达最高(0.4009dL/g),产物的亲水性能也得到改善,有利于PLEG作为药物缓释载体的应用。  相似文献   

8.
利用直接缩聚法制备了乳酸与聚乙二醇的嵌段共聚物(PLEG)。采用正交试验法考察了乳酸与聚乙二醇质量比、催化剂种类、催化剂含量、反应温度和反应时间对PLEG性能的影响。结果显示优化的反应条件:乳酸与聚乙二醇质量比为8.5∶1.5,采用自制的复合催化剂,催化剂质量分数0.6%,聚合温度160℃,聚合时间5h。另外还考察了扩链剂对PLEG性能的影响,结果表明扩链剂能够显著提高PLEG的相对分子质量。对合成的PLEG通过红外光谱、核磁共振、热分析进行了表征。  相似文献   

9.
聚乙二醇对直接合成聚乳酸-聚乙二醇的影响   总被引:2,自引:0,他引:2  
为了得到综合性能较佳的生物降解材料聚乳酸-聚乙二醇(PLEG),以SnO为催化剂.直接以外消旋乳酸单体为原料,与不同数均分子量(Mn)的聚乙二醇(PEG)共聚合,通过直接熔融共聚法,在165℃、70Pa下.反应15h,合成了系列PLUG。用特性黏数测试、傅里叶变换红外光谱、核磁共振氢谱、差示扫描量热法、X射线衍射、接触角测试等手段对其进行表征,发现PEG的Mn为1000时,特性黏数最大,为0.4009dL/g,且亲水性得到改善。  相似文献   

10.
改性聚硅氧烷/聚氨酯弹性体的阻尼性能研究   总被引:1,自引:0,他引:1  
将异氰酸酯硬段引入聚硅氧烷(PDMS)链中合成改性聚硅氧烷(M-PDMS),采用不同相对分子质量的聚乙二醇(PEG)和2,4-甲苯二异氰酸酯(TDI)合成聚氨酯预聚体(PUP),通过交联聚合进行网络互穿,制备了改性聚硅氧烷/聚氨酯弹性体(M-PDMS/PUE).讨论了PEG相对分子质量、M-PDMS/PUP质量比对材料...  相似文献   

11.
以甲苯二异氰酸酯(TDI)为改性剂,分别以聚乙二醇单甲醚(MPEG)、聚乙二醇(PEG)为基础物质,采用溶液聚合法分别合成了端异氰酸酯基聚乙二醇单甲醚(NCO-MPEG)、端异氰酸酯基聚氨酯预聚体(NCO-PUE)和乙醇封端的端异氰酸酯基聚氨酯预聚体(NCO-PUE-ET)。实验确定TDI与MPEG、PEG以及NCO-PUE乙醇封端的反应时间分别为1.5 h、3.0 h和1.5h,当反应物配比nTDI∶nPEG=1.05∶1时,聚合产物NCO-PUE的数均分子量达到3.55万;FTIR分析结果表明通过TDI与MPEG、PEG的加成反应将-NCO基团带到了聚氨酯预聚体分子链的末端,并且聚合产物NCO-MPEG被成功接枝到了聚二甲基硅氧烷(PDMS)弹性粒子表面;热重分析(TG)结果表明端异氰酸酯基聚氨酯预聚体的初始热分解温度均在350℃以上,完全能够满足下一步实验需要。  相似文献   

12.
两步法合成防水透湿型水性聚氨酯的研究   总被引:2,自引:1,他引:1  
预聚体制备中采用异氰酸酯两步投料法(两步法),通过在分子链的软段中引入亲水性的聚乙二醇合成了防水透湿型阴离子水性聚氨酯(WPU).研究了聚乙二醇的相对分子质量、第一阶段预聚合中nNCO/nOH比值、异氰酸酯的复配对WPU乳胶的粒径、胶膜的力学性能和涂层织物的防水透湿性的影响.结果表明,在总/nNCO/nOH=1.3,第一阶段预聚合nNCO/nOH=1.1,聚己内酯二元醇/聚乙二醇(PEG)为70/30(其中PEG包括PEG1000和PEG2000,质量分数分别为24%和6%),DMPA质量分数为6%,异氰酸酯IPDI/MDI质量比为50/50时,合成出的WPU涂层织物在38℃时的透湿量超过4000g/(m2·d),且耐静水压力达到4.3 kPa,具有良好的防水透湿性.  相似文献   

13.
以2,4-甲苯二异氰酸酯(TDI)、聚乙二醇(PEG)和二羟甲基丙酸(DMPA)为主要原料合成了水性聚氨酯固色剂,研究了PEG的相对分子质量、预聚反应温度、DMPA用量及有机溶剂对反应的影响,并对产品的固色性能进行了研究。结果表明,PEG相对分子质量应选在800~1000之间,最佳的预聚反应温度为75℃,DMPA的质量分数为5%,有机溶剂选用二甲基甲酰胺(DMF)或丙酮。该固色剂对直接染料、活性染料和酸性染料的皂洗牢度、耐磨擦牢度和水洗牢度有明显的提高。  相似文献   

14.
影响聚醚型聚氨酯预聚体合成的因素   总被引:8,自引:0,他引:8  
以聚乙二醇(PEG)和二异氰酸酯为原料,通过测定-NCO的含量,确定了预聚反应的时间和温度,合成了聚醚型聚氨酯预聚体;对影响预聚体合成的因素:异氰酸酯的种类、n(-NCO):n(-OH)、二异氰酸酯的自聚、水分的含量以及预聚体的贮存稳定性等进行了研究。  相似文献   

15.
以季戊四醇(PET)为引发剂,在辛酸亚锡催化下,丙交酯(LA)开环聚合合成了四臂星型聚丙交酯(PETPLA4),对其分子链末端羟基进行羧基化后与聚乙二醇(PEG)反应合成了四臂星型聚丙交酯-聚乙二醇[PET-(PLAPEG)4]。N-羟基琥珀酰亚胺与生物素反应合成了琥珀酰亚胺生物素酯(Biotin-NHS),与PET-(PLA-PEG)4反应合成了四臂星型生物素化聚乙二醇-聚丙交酯[PET-(PLA-PEG-biotin)4]。通过核磁和凝胶渗透色谱对其化学结构和分子量进行了表征,通过示差扫描量热仪及界面张力仪对其热性能和亲水性进行了测定。结果表明,此聚合物结构明确,分子量分布较窄,其热性能与聚丙交酯明显不同,其亲水性相对于聚丙交酯有明显改善。  相似文献   

16.
以聚乙二醇(PEG)、聚丙二醇(PPG)、二苯基甲烷二异氰酸酯(MDI)为主要原料,1,4–丁二醇(BDO)为扩链剂,合成出遇水膨胀聚氨酯弹性体。研究了不同相对分子质量的PEG、多元醇配比、预聚体w(NCO)以及异氰酸酯指数(R值)对聚氨酯弹性体性能的影响。结果表明:PEG相对分子质量为1 000,m(PPG1000):m(PEG1000)=20:80,预聚体w(NCO)控制为8%~9%,R值为1.06时,制备的膨胀型聚氨酯止水材料综合性能最好。  相似文献   

17.
直接以外消旋乳酸(D,L-LA)单体为原料,使其与数均相对分子质量(Mn)为1000的聚乙二醇(PEG)[m(LA):m(PEG)=9]共聚,通过直接熔融共聚法合成了生物降解材料聚乳酸-聚乙二醇(PELG),用特性黏数[η]、凝胶渗透色谱(GPC)、傅立叶红外光谱(FTIR)、核磁共振氢谱(^1H NMR)、差热分析(DSC)、X-射线衍射、接触角测试等手段,对其相对分子质量、结构、性能等进行了系统的表征。相同合成条件下,PELG与聚乳酸相比,其相对分子质量高,亲水性能也有所改善。在相近的合成条件下,D,L-LA与PEG直接熔融共聚能获得比D,L-丙交酯开环共聚高的相对分子质量,并达到与L-丙交酯开环共聚相当的相对分子质量。  相似文献   

18.
以异佛尔酮二异氰酸酯(IPDI)、聚乙二醇(PEG)、环氧树脂E-51为主要原料,合成了聚氨酯预聚体接枝改性的环氧树脂,并以改性环氧树脂作为乳化剂,乳化环氧树脂E-51,通过相反转法制备了纳米级的非离子型水性环氧-聚氨酯乳液。采用红外光谱(FT-IR)对改性环氧树脂进行结构表征,通过纳米粒度分析仪和透射电镜(TEM)研究了乳液的粒径和形貌,同时研究了PEG相对分子质量和聚氨酯预聚体用量对乳液稳定性、粒径的影响。结果表明:当PEG相对分子质量为6 000,聚氨酯预聚体含量为20%时,制备的水性环氧-聚氨酯乳液的综合性能最佳,此时所制备乳液稳定性好,粒径小于150 nm。  相似文献   

19.
端双-(三乙氧基硅)聚氨酯/脲的合成与表征   总被引:1,自引:1,他引:0  
采用不同摩尔质量的聚乙二醇(PEG)与2,4-甲苯二异氰酸酯(TDI)反应,经分离提纯制得聚氨酯预聚体;再与双-(γ-三乙氧基硅丙基)胺按一定配比进行反应,合成了一系列结构规整的端双-(三乙氧基硅)聚氨酯/脲(SPUR)。通过红外光谱、核磁共振谱及二正丁胺滴定法对预聚体和聚合物的结构进行了确认,证实得到一系列结构清晰、明确的聚氨酯预聚体,并在此基础上制得了结构规整的SPUR;对固化的SPUR膜的性能研究表明:随着PEG摩尔质量的增大,SPUR膜的耐热性和吸水率均升高。  相似文献   

20.
聚氨酯交联改性聚丙烯酸酯压敏胶的研究   总被引:3,自引:2,他引:1  
采用溶液自由基共聚法合成了含有羟基的(甲基)丙烯酸酯共聚物(PA),采用预聚法合成了端-NCO基聚氨酯(PU)预聚体,然后将PA和PU预聚体混合均匀后制备PUA压敏胶。考察了n(-NCO)∶n(-OH)比例、不同相对分子质量(Mn)的聚丙二醇(PPG)和不同类型的聚醚合成的PU预聚体对PUA压敏胶性能的影响。实验结果表明,改性PUA压敏胶的剥离强度随着PU预聚体用量的增加而逐渐降低,最大降幅为8N/30mm左右,但残胶现象可消除;当n(-NCO)∶n(-OH)=3∶2、m(PA)∶m(PU)=10∶1且PPG的Mn为400时,所制取的PUA压敏胶的持粘性较未改性PA压敏胶提高了267%,但初粘性则有所降低;对Mn均为400的聚乙二醇(PEG)和PPG而言,由PEG400合成的PUA压敏胶比由PPG400合成的PUA压敏胶改性效果更好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号