首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we report the first direct observations of local ordering in undoped and La-doped Pb(Mg1/3Nb2/3)O3 (PMN) on an atomic scale by high-resolution (∼1.26 Å) Z -contrast imaging. The 1:1 ordering occurs by a variation in the occupancy of Mg and Nb cations between BI and BII sublattices. In ordered regions, the BII sublattice is dominantly occupied by Nb cations, but a small Mg occupancy cannot be excluded. The Mg cations were found to dominantly occupy the BI sublattice. Within the BI sublattice, the local Mg/Nb ratio was found to vary among the various BI sublattices. The results show that the random-site model, rather than the space-charge model, is a better structural model for the 1:1 ordering observed in PMN. A random distribution of Mg and Nb cations on the BI sublattice within 1:1 ordered regions is believed to be responsible for the relaxor behavior of mixed B-site cation relaxors, such as PMN.  相似文献   

2.
The effect of cation ordering on an electric field-induced relaxor to normal ferroelectric phase transition in Pb(Mg1/3Nb2/3)O3 (PMN)-based ceramics was investigated. Both A-site La doping and B-site Sc doping were found to enhance the chemical ordering in these relaxor ceramics. However, the enhanced chemical orderings showed different impacts on the dielectric and ferroelectric properties in these perovskite materials. The 5% La doping was observed to shift the dielectric maximum temperature ( T max) to a significantly lower temperature and suppress the electric field-induced transition to a ferroelectric phase. In contrast, the 5% and 10% Sc doping showed little effect on T max but strengthened the ferroelectric coupling. The difference is discussed on the basis of cation size and charge imbalance. An electric field-temperature phase diagram is also proposed for the 0.90PMN–0.10Pb(Sc1/2Nb1/2)O3 based on its history dependence of the electric field-induced phase transition.  相似文献   

3.
4.
Lattice constants, grain size, electrical conductivity, and luminescence were measured for sintered BaTiO3 ceramics doped with 0 to 1.2 at.% rare-earth ions. BaTiO3 doped with low levels of rare-earth ions contains grains 10 μm in size and has lattice constants nearly equal to those of undoped ceramics. In this case, rare-earth ions occupy Ba2+ sites and yield donors. When grain growth is inhibited by high doping levels or by insufficient sintering, the lattice constants change, the rare-earth ions occupy both Ba2+ and Ti4+ sites, and, consequently, BaTiO3 becomes insulative because of charge compensation.  相似文献   

5.
The ordered domain structures in Pb(Mg1/3Nb2/3)O3(PMN) and Pb1– x La x (Mg1/3Nb2/3)O3 are identified using high-resolution transmission electron microscopy (HRTEM) and nanobeam diffractometry (NBD). The chemical compositions in the ordered domains and in the disordered matrices are also acquired using energy-dispersive spectroscopy (EDS). The best matching computer-simulated HRTEM image has a Mg2+/Nb2+ ratio of return ½. There is no obvious chemical composition difference between the ordered domains and the disordered matrices. The number of the normalized total positive valence electrons remains almost constant in the ordered domains and in the disordered matrices for all the samples. The reason for the growth of the ordered domains in La-doped PMN also is discussed.  相似文献   

6.
The Madelung energies of A2+ (B1/32+ B2/35+) O32- and A2+ (B2/33+ B1/36+) O32- systems were calculated for different dopants on the A-site. The theoretical results show that the higher-valence dopant enhances the 1/2<111>-type (1:1) ordered arrangement of B-site cations in A2+ (B1/32+ B2/32+)O32-, whereas the lower-valence dopant promotes the 1:1 ordering in A2+ (B2/33+ B1/36+)O32-, and no doping promotes the 1/3<111>-type (1:2) ordering in the both systems. These calculation results are in agreement with the experimental observations of donor- and acceptor-doped PMN systems.  相似文献   

7.
Data concerning the types of charge carrier responsible for electrical conduction in single-crystal aluminum oxide are reviewed, and explanations are offered for discrepancies in terms of the experimental conditions. Measurements on undoped and Co2+ and Mg2+ doped crystals, made using a volume guard to avoid surface and gas conduction, are used to describe Al2O3 as an ionic conductor with Al interstitial ions as the principal charge carriers at high oxygen activity. A defect model is proposed and the mobility of Al i 3+, the concentration of Al i 3+ in undoped crystals, and the equilibrium constant for defect formation at high temperatures are estimated.  相似文献   

8.
The effects of Cd2+ substitution for Pb2+ and Ni2+ ions (on the A-site and B-site of the ABO3 perovskite structure, respectively) on the electrical conductivities in Pb(Ni1/3-Nb2/3)O3-PbZrO3-PbTiO3 (PNN-PZ-PT) ceramics have been investigated. Generally, the compounds that contain PbO show p -type conductivity, because of PbO evaporation. Thus, the conductivities are known to be proportional to the PbO evaporation. However, PNN-PZ-PT ceramics exhibit a reciprocal relationship between the conductivities and the evaporation of PbO. Generally, no vacancy change is observed with the substitution of the same-charge valence ion. However, in the PNN-PZ-PT ceramic, lead vacancies could be created or annihilated by replacing Pb2+ and Ni2+ ions with Cd2+ ions, because of incomplete substitution. The electrical conductivities are influenced by this incomplete substitution.  相似文献   

9.
Li+ ions have been successfully doped into the La sites of (La0.95Eu0.05)2Ti2O7 nanocrystals through a facile citric acid sol–gel method. The doping concentration of Li+ ions can be as high as 15 mol%. Photoluminescence (PL) performances of the obtained samples have been investigated. The results showed that a doping with small number of Li+ ions improves the PL intensity of the synthesized La2Ti2O7:Eu3+ nanophosphors. The highest emission intensity was observed using the formula of (La0.92Eu0.05Li0.03)2Ti2O7, whose brightness was increased by almost 20% in comparison with that of (La0.95Eu0.05)2Ti2O7.  相似文献   

10.
Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics of pure perovskite structure were prepared by the two-stage method with the addition of 0–3.0 wt% MnO2 and their piezoelectric properties were investigated systematically. The MnO2 addition influences in a pronounced way both the crystal structure and the microstructure of the materials. The materials are transformed from the tetragonal to the rhombohedral structure, and the grain size is enhanced when manganese cations are added. The distortion of crystal structure for samples with MnO2 addition can be explained by the Jahn–Teller effect. The values of electromechanical coupling factor ( k p) and dielectric loss (tan δ) are optimized for 0.5-wt%-MnO2-doped samples ( k p= 0.60, tan δ= 0.2%) and the mechanical quality factor ( Q m) is maximized for 1.0-wt%-MnO2-doped samples ( Q m= 1041), which suggests that oxygen vacancies formed by substituting Mn3+ and Mn2+ ions for B-site ions (e.g., Ti4+ and Zr4+ ions) in the perovskite structure partially inhibited polarization reversal in the ferroelectrics. The ceramics with 0.50–1.0 wt% MnO2 addition show great promise as practical materials for piezoelectric applications.  相似文献   

11.
The structure and dielectric properties of (1− x )Pb(Sc2/3W1/3)O3–( x )Pb(Zr/Ti)O3 ceramics have been investigated over a full substitution range. All compositions with x < 0.5 adopt a cubic perovskite structure; however, for x ≤ 0.25 a doubled cell results from a 1:1 ordered distribution of the B-site cations. The structural order in Pb(Sc2/3W1/3)O3 (PSW) can be described by a random-site model with one cation site occupied by Sc3+ and the other by a random distribution of (Sc1/33+W2/36+). The ordering is destabilized in solid solutions of PSW with PbZrO3 (PSW–PZ), but stabilized by PbTiO3 in the (1− x )PSW–( x )PT system. The changes in order are accompanied by alterations in the dielectric response of the two systems. For PSW–PZ the temperature of the permittivity maximum ( T ɛ,max) increases linearly with x ; however, for PSW–PT T ɛ,max decreases in the ordered region (up to x = 0.25) and then increases rapidly as the order is lost. Similar effects were produced by modifying the degree of order of (0.75)PSW–(0.25)PT; when the order parameter was reduced from ∼1.0 to ∼0.65, T ɛ,max increased by more than 60°C.  相似文献   

12.
Cation ordering and domain boundaries in perovskite Ca[(Mg1/3Ta2/3)1− x Ti x ]O3 ( x =0.1, 0.2, 0.3) microwave dielectric ceramics were investigated by high-resolution transmission electron microscopy (HRTEM) and Rietveld analysis. The variation of ordering structure with Ti substitution was revealed together with the formation mechanism of ordering domains. When x =0.1, the ceramics were composed of 1:2 and 1:1 ordered domains and a disordered matrix. The 1:2 cation ordering could still exist until x =0.2 but the 1:1 ordering disappeared. Neither 1:2 nor 1:1 cation ordering could exist at x =0.3. The space charge model was used to explain the cation ordering change from 1:2 to 1:1 and then to disorder. A comparison between the space charge model and random layer model was also conducted. HRTEM observations showed an antiphase boundary inclined to the (111) c plane with a projected displacement vector in the 〈001〉 c direction and ferroelastic domain boundaries parallel to the 〈100〉 c direction.  相似文献   

13.
Investigations have been performed on the La-modified (1 - x )Pb(Mg1/3Nb2/3)O3—( x )PbTiO3 crystalline solution for compositions close to the morphotropic phase boundary (MPB) using energy-dispersive X-ray spectrometry (EDS). Studies were performed on specimens with La contents between 0 and 10 at.% for x = 0.35 which were fabricated by keeping the average Mg/Nb/Ti ratio in the bulk ceramic unchanged. In this series of samples, La3 was compensated for by introducing B-site vacancies. Quantitative analysis by EDS revealed a change in the B-site cation concentrations with La substitution. It was observed that the Nb concentration decreases and the Ti concentration increases with increasing La content, indicating that local charge compensation in the perovskite phase is taking place by an adjustment in B-site cation concentrations. Phase analysis demonstrated the presence of a second phase for La contents above 2 at.%. Scanning electron microscopy then revealed the presence of a secondary pyrochlore phase with an octahedral-like morphology. The composition of the pyrochlore phase was found to be rich in Nb and poor in Ti. The effects of changes in composition on dielectric properties, polarization, and electrically induced strain were then investigated.  相似文献   

14.
The phase stabilities in the(1−x)Ba(Zn1/3Ta2/3)O3 (BZT)-xBaZrO3(BZ)system have been investigated using samples prepared by the mixed oxide method. The substitution of Zr4+destabilizes the 1:2 cation ordering in BZT and pro-motes the formation of a cubic, 1:1 ordered structure with a doubled perovskite repeat. The homogeneity range of the 1:1 phase extends from x = 0.04 to approximately x = 0.25; substitutions beyond this range stabilize a disordered perovskite. The limits of stability of the 1:1 ordering coin-cide with compositions previously found to exhibit anoma-lies in their dielectric loss. The range of homogeneity is consistent with a "random layer" model for the 1:1 ordered "Ba{β';1/2β1/2}O3" structure. In this model the B× positions are assumed to be occupied exclusively by Ta5+, and the b× sites by a random distribution of Zn2+, Zr4+, and the remaining Ta 5+ cations. The validity of the model, where the ordered solid solutions can be represented by Ba{[Zn2− y /3Ta(1−2 y )/3Zr y ]1/2[Ta]1/2}O3(y =2x)was con-firmed by Rietveld refinements conducted using data col-lected with a synchrotron X-ray source.  相似文献   

15.
The ordered structures of the (Pb1- x Ba x )(Mg1/3Nb2/3)O3crystalline solution series were investigated by selected area electron diffraction (SAED) and high-resolution electron microscopy (HREM). At low Ba contents (e.g., x < 0.40), the ordered structure was found to be isostructural with Pb(Mg1/3Nb2/3)O3, with a doubled unit cell characterized by 1/3{111} superlattice reflections. At higher Ba contents (e.g., x > 0.60), the ordered structure was characterized by 1/3{111} superlattice reflections. For intermediate Ba contents (e.g., x - 0.60), diffuse scattering along the {111} between diffuse 1/2{111} and 1/3{111} reflections was observed. The ordering is attributed to the distribution of the B-site cations between multiple sublattices. Strong fluctuations in the B-site cation ratio between ordered and disordered regions are believed not to exist; however, the possibility of weak fluctuations is consistent with the observed lattice images.  相似文献   

16.
Samarium ions (Sm2+) incorporated into aluminosilicate glasses by a sol-gel process showed persistent spectral hole burning at room temperature. Gels of the system Na2O-Al2O3SiO2 synthesized by the hydrolysis of Si(OC2H5)4, Al(OC4H9)3, CH3 COONa, and SmCl3·6H2O were heated in air at 500°C, then reacted with H2 gas to form Sm2+ ions. Whereas Al3+ ions effectively dispersed the Sm3+ ions in the glass structure, Na+ ions were not effective. The Al2O3-SiO2 glasses proved appropriate for reacting the Sm3+ ions with H2 gas and exhibited the intense photoluminescence of Sm2+ ions. The reaction of Sm3+ ions with H2 in the Al2O2-SiO2 glasses was determined by first-order kinetics, and the activation energy equaled 95 kJ/mol. At 800°C, the maximum photoluminescence of the Sm2+ ions was achieved within 20 min.  相似文献   

17.
Extensive studies that have been conducted on the Pb(Mg1/3Nb2/3)O3 (PMN) family of relaxor ferroelectrics have led to the establishment and acceptance of the"space-charge" model as a basis for explaining their structures and dielectric properties. In this model, the arrangement of the metal cations on the octahedral sites of the perovskite structure is interpreted in terms of the formation of nega-tively charged ordered nanodomains that are dispersed in a positively charged disordered matrix. The primary experi-mental support for this interpretation has come from the apparent absence of any growth of the domains or change in the degree of ordering as the heat treatment is extended. Here, we report on experiments that have been conducted on the tantalate relaxor, Pb(Mg1/3Ta2/3)O3(PMT), and its solid solutions with PbZrO3, in which the size of the do-mains and the degree of cation ordering have been in-creased by two orders of magnitude through annealing that has been conducted at a temperature of 1325°C. Moreover, fully ordered ceramics that are comprised of large domains retain relaxor behavior. These results cannot be explained by the space-charge model and support a charge-balanced, "random-site" model for the ordering of the metal cations  相似文献   

18.
A series of novel red phosphors LiEu1− x Bi x (WO4)0.5(MoO4)1.5 ( x =0, 0.05, 0.10, 0.15, 0.20, 0.30, 0.40, and 0.50) were synthesized by the conventional solid-state reaction method. The spectrum and the crystal structure of the phosphors were characterized by Fluorescence spectrophotometry and X-ray diffraction, respectively. The photoluminescent results show that all samples can be excited efficiently by UV (396 nm) and blue (467 nm) light and that they emit red light at 615 nm with line spectra, which are coupled well with the characteristic emissions from UVLED and blue light-emitting diode (LED), respectively. There is an efficient energy transfer from Bi3+ to Eu3+ ions, leading to the emission intensity of Eu3+ being enhanced by 1.5 times, and even more when Bi3+ ions are introduced into LiEu (WO4)0.5(MoO4)1.5. The introduction of Bi3+ ions broadened the excitation band of the phosphor, and the optimum doping concentration is found to be 10 mol% of Bi3+.  相似文献   

19.
20.
Glasses with compositions Li1.2M0.2Ge1.8(PO4)3 (M = Al, Ga, Y, Gd, Dy, and La) were prepared and converted to glass-ceramics by heat treatment. The effects of the M3+ ions on the conductivity of the glasses and glass-ceramics were studied. The main phase present in the glass-ceramics was the conductive phase LiGe2(PO4)3. Al3+ and Ga3+ ions entered the LiGe2(PO4)3 structure by replacing Ge4+ ions, but lanthanide ions did not. The glass-ceramics exhibited much higher conductivity than the glasses. With increased ionic radius of the M3+ ions, the conductivity remained almost unchanged at ∼3 × 10−12 S/cm for the glasses, but it decreased from 1.5 × 10−5 to 8 × 10−9 S/cm for the glass-ceramics at room temperature. The higher conductivity for Al3+- and Ga3+-containing glass-ceramics was suggested to result from the substitutions of Al3+ and Ga3+ ions for Ge4+ ions in the LiGe2(PO4)3 structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号