共查询到20条相似文献,搜索用时 78 毫秒
1.
针对现有的膝关节CT图像分割方法耗时长、精度低的问题,文中提出一种改进U-Net的卷积神经网络。首先,该网络将添加批归一化层的残差模块作为U-Net编码过程的主要单元,以增加对图像特征的提取能力,克服网络训练过程中可能产生的梯度消失和梯度爆炸问题;其次,把Attention U-Net中的注意力门加入到U-Net解码过程的前3个阶段,在尽量减少网络复杂性的同时突出模型对图像重要特征的学习;最后,该网络结合Adam一阶优化算法和Focal Loss损失函数实现膝关节CT图像的精准分割。在膝关节CT图像数据集上,Dice系数、IOU系数精度分别达到96.5%,93.4%,豪斯多夫距离减小到(3.2±1.3)mm。相比U-Net和SegNet模型,文中算法在膝关节CT图像的分割方面精度更高,网络训练时间减少,平均预测每张图像的效率也有较大提高。 相似文献
2.
在眼科疾病的诊断中,对视网膜血管进行分割是非常有效的一种方法。在方法使用中,经常会遇到由于视网膜血管背景对比度低及血管末梢细节复杂导致的血管分割难度较大的问题,通过在设计网络的过程中在基础U-net网络中引入残差学习,注意力机制等模块,并将两者巧妙地结合在一起,提出一种新型的基于U-net的RAU-net视网膜血管图像分割算法。首先,在网络的编码器阶段加入残差模块,解决了模型网络加深导致梯度爆炸以及梯度消失的问题。其次,在网络的解码器阶段引入注意力门(attention gate, AU)模块,用来抑制不必要的特征,从而使模型产生更高的精度。通过在DRIVE数据集上进行验证,该算法的准确率、灵敏度、特异性和F1-score分别达到了0.7832,0.9815,0.9568和0.8192。分割效果相对于普通监督学习算法较为良好。 相似文献
3.
在眼科疾病的诊断中,对视网膜血管进行分割是非常有效的一种方法。在方法使用中,经常会遇到由于视网膜血管背景对比度低及血管末梢细节复杂导致的血管分割难度较大的问题,通过在设计网络的过程中在基础U-net网络中引入残差学习,注意力机制等模块,并将两者巧妙地结合在一起,提出一种新型的基于U-net的RAU-net视网膜血管图像分割算法。首先,在网络的编码器阶段加入残差模块,解决了模型网络加深导致梯度爆炸以及梯度消失的问题。其次,在网络的解码器阶段引入注意力门(attention gate, AU)模块,用来抑制不必要的特征,从而使模型产生更高的精度。通过在DRIVE数据集上进行验证,该算法的准确率、灵敏度、特异性和F1-score分别达到了0.7832,0.9815,0.9568和0.8192。分割效果相对于普通监督学习算法较为良好。 相似文献
4.
为了更加准确地根据医学图像进行医学类疾病诊断,可采用U型结构的全卷积神经网络模型对医学图像进行分割,并且可在分割的过程中,引入空间注意力机制和通道注意力机制,分别从空间维度和通道维度提取输入特征图的重要信息和抑制非重要信息。根据该思想,设计了一种基于通道和空间注意力机制的U型Transformer模型(SC U-Transformer)。SC U-Transformer包含编码和解码过程,编码过程使用Swin-Transformer作为编码器,提取上下文特征并实现下采样;解码过程使用包含扩展图像块的对称Swin-Transformer模型,并添加空间注意力模块和通道注意力模块,分别使模型更加关注前景和相关联的特征通道。根据ACDC数据集的实验结果表明,SC U-Transformer能有效提高医学图像分割的准确率。 相似文献
5.
6.
针对遥感图像数据本身存在分辨率高、背景复杂和光照不均等特性导致边界分割不连续、目标错分漏分以及存在孔洞等问题,提出了一种基于改进Swin-Unet的遥感图像分割方法。在编码器末端引入空洞空间金字塔池化(Atrous Spatial Pyramid Pooling, ASPP)模块,用于捕获多尺度特征,增强网络获取不同尺度的能力,充分提取上下文信息;将解码器端的Swin Transformer Block替换为残差Swin Transformer Block,不仅保留了原始信息,又能够缓解模型出现梯度弥散现象;在跳跃连接中引入残差注意力机制,可以让模型更加关注特征图中的重要特征信息,抑制无效信息,从而提高模型分割的准确率。在自建数据集上进行实验,结果表明,改进后的网络平均交并比(mean Intersection over Union, mIoU)达到了80.55%,提高了4.13个百分点,证明改进后的网络可以有效提高遥感图像分割的精度。 相似文献
7.
《电子技术与软件工程》2019,(21)
本文介绍了传统卷积神经网络的基本原理和存在的问题,然后针对存在的问题,提出了一种基于图分割技术的全卷积神经网络算法。经实验验证可知,本文所提出算法在分割精度、平均精确度、全局精确度、计算效率和存储空间占用方面均优于传统算法,同时本算法具备一定的推广和应用价值。 相似文献
8.
针对医学领域中腺体细胞分割问题,提出基于改进U-net网络的腺体细胞图像分割算法,提供一种高可用性图像处理模型。该模型能够增强腺体细胞特征,减少信息丢失,借用OpenCV对腺体细胞轮廓进行颜色处理。采用U-net网络结合空洞残差模块,提高细胞分割精确度。文章方法在ISBI数据集评测,设计多组实验对比,验证可行性,实验结果Dice系数达0.925,表明对腺体细胞图像分割算法存在较高应用价值。 相似文献
9.
磁共振影像是脑肿瘤疾病中常用的诊断工具,临床上的量化分析需要对影像结果进行分割得到肿瘤区域,但手动分割十分耗时且高度依赖于医生的临床经验。为此,本文提出一种基于深度学习的脑磁共振图像分割算法,解决了原网络无法有效提取关键特征的问题。该算法使用改进的有限对比度自适应直方图均衡(Contrast Limited Adaptive Histogram Equalization, CHALE)算法,对脑肿瘤磁共振影像进行图像增强后,将结果输入CA-Net网络对数据集初步分割,并将全注意力算法和U-net骨架结构结合(包括空间、通道和尺度注意力模块),实现对不同尺度的空间和通道的特征转换连接。模型应用混合损失函数提高分割精度。初步分割的结果可通过后处理进一步提高精度,得到最终的肿瘤区域。初步分割结果中,Dice指标可以达到88.40(±0.24)%,结合图像处理提高至89.21(±0.36)%,分割精度相较于其它算法有明显提高。 相似文献
10.
《电子技术与软件工程》2019,(1)
本文阐述了卷积神经网络的基本概念,并基于此引出全卷积神经网络和带孔卷积等卷积神经网络,对其含义、优缺点及其在图像语义分割中的应用进行了进一步的介绍和总结。本文阐述了卷积神经网络的基本概念,并基于此引出全卷积神经网络和带孔卷积等卷积神经网络,对其含义、优缺点及其在图像语义分割中的应用进行了进一步的介绍和总结。 相似文献
11.
12.
3维肾脏CT图像的自动准确分割对减轻医师阅片工作量和提高计算机辅助诊断效率具有重要意义。但是,由于肾脏器官的结构复杂性以及邻近部位的灰度相似性,3维肾脏的准确分割仍具有挑战性。该文基于简化脉冲耦合神经网络(SPCNN)结构简单、参数量少的特点,结合模糊连接度(FC)算法,提出一种3维肾脏CT图像的自动分割算法。主要贡献为:将SPCNN的2维模型扩展为3维模型,可以充分利用3维CT图像的层间信息;提出了一种基于感兴趣区域质心的3维种子点自动生成策略,可以有效提高算法的自动分割效率;实现了3维FC响应图与3维SPCNN的有效耦合。所提算法在自制数据集和公开数据集上进行了验证实验,结果表明该算法的性能优于现有的主流算法,其Dice系数、准确率、敏感度、体积误差、平均对称表面距离的平均值分别可以达到0.9095, 0.9969, 0.8517, 0.1749和0.8536。 相似文献
13.
针对视网膜血管分割中存在的细小血管像素模糊以及血管断裂的问题,本文提出一种改进的密集U型网络(dense residual U-shaped network,DRU-Net)。首先,结合残差结构和密集连接的优点提出了密集残差模块,并用其构建DRU-Net网络的编码层和解码层,充分提取目标特征;然后在网络底部添加由空洞卷积搭建的多路特征蒸馏模块(multi-characteristic distillation block,MCDB) ,提取不同尺度的图像特征信息;最后在网络的跳跃连接处引入双向卷积长短期记忆模块(bidirectional convolutional long and short-term memory,BConv LSTM) ,充分融合浅层和深层的特征 信息,输出完整的血管图。在公开的数据集DRIVE和CHASE_DB1上进行实验,分别取得了 0.966 9和0.976 4的准确度,同时AUC(area under curve)分别达到了0.983 9和0.986 7,证明网络具有较好的分割效果,拥有一定的应用价值。 相似文献
14.
支持向量机方法被看作是对传统学习分类方法的一个好的替代,特别在小样本、高维情况下,具有较好的泛化性能.文章对一对一支持向量机方法进行了改进,并采用其对多目标图像进行了分割研究.实验结果表明,支持向量机方法是一种很有前景的图像分割技术. 相似文献
15.
为解决传统遥感图像分类方法特征提取过程复杂、特征表现力不强等问题,该文提出一种基于深度卷积神经网络和多核学习的高分辨率遥感图像分类方法。首先基于深度卷积神经网络对遥感图像数据集进行训练,学习得到两个全连接层的输出将作为遥感图像的两种高层特征;然后采用多核学习理论训练适合这两种高层特征的核函数,并将它们映射到高维空间,实现两种高层特征在高维空间的自适应融合;最后在多核融合特征的基础上,设计一种基于多核学习-支持向量机的遥感图像分类器,对遥感图像进行精确分类。实验结果表明,与目前已有的基于深度学习的遥感图像分类方法相比,该算法在分类准确率、误分类率和Kappa系数等性能指标上均有所提升,在实验测试集上3个指标分别达到了96.43%, 3.57%和96.25%,取得了令人满意的结果。
相似文献16.
针对新一代多普勒气象雷达的散射回波图像受非降雨等噪声回波干扰导致精细化短时气象预报准确度降低的问题,该文提出一种基于深度卷积神经网络(DCNN)的气象雷达噪声图像语义分割方法。首先,设计一种深度卷积神经网络模型(DCNNM),利用MJDATA数据集的训练集数据进行训练,通过前向传播过程提取特征,将图像高维全局语义信息与局部特征细节融合;然后,利用训练误差值反向传播迭代更新网络参数,实现模型的收敛效果最优化;最后,通过该模型对气象雷达图像数据进行分割处理。实验结果表明,该文方法对气象雷达图像的去噪效果较好,与光流法、全卷积网络(FCN)等方法相比,该文方法对气象雷达图像中真实回波和噪声回波的识别准确率高,图像的像素精度较高。 相似文献
17.
18.
为了提高模型在道口环境下的车辆图像的特征提取和识别能力,提出了一种基于改进残差网络的车辆分类方法。首先以残差网络为基础模型,改进了残差块中激活函数的位置,并将残差块中的一般卷积用分组卷积代替,引入注意力机制,用焦点损失函数替换交叉熵损失函数。实验部分先用公开数据集StanfordCars进行预训练,再用自建的道口车辆数据集进行迁移学习。结果表明,改进模型在两个数据集中的准确率均优于几种经典的深度学习模型。 相似文献
19.
为了自动确定多光谱遥感影像中地物目标类别数,该文提出一种基于可变类模糊C均值(Fuzzy C-Means, FCM)的多光谱遥感影像分割方法。首先定义像素与聚类的非相似性测度并据此构建目标函数,而后通过求解目标函数得到最优模糊隶属度和聚类中心。其次,研究模糊因子与影像地物目标类别数的关系,并通过定义划分熵(Partition Entropy, PE)指数优选模糊因子,选择PE指数值稳定收敛后所对应的最小模糊因子值为最优模糊因子,根据模糊因子与类别数的关系得到最优类别数,从而实现了影像的可变类分割。最后,利用提出算法分别对合成和真实多光谱遥感影像进行分割实验,实验结果表明,提出算法不仅能自动确定影像的最优类别数,还能获得较好的分割结果,为实现自动确定遥感影像中地物目标类别数提供新方法。 相似文献