共查询到20条相似文献,搜索用时 93 毫秒
1.
固定流导法校准真空漏孔方法研究 总被引:1,自引:1,他引:1
固定流导法采用的是分压力测量技术,对质谱分析室的漏放气率的指标要求不高.通过实验得到四极质谱计的非线性引起的测量误差可达38%,在具体校准过程中能够很好调节稳压室中的气体压力,使通过小孔的气体流量与待校真空漏孔漏率非常接近,从而避免了四极质谱计的非线性影响.稳压室中的气体压力比较大,所以稳压室不需要特别严格的材料处理工艺,具体校准过程中也不需要彻底的烘烤出气就能得到纯净的单一气体.固定流导法校准真空漏孔的不确定度的评定值为2.6%,可以通过精确校准电容薄膜规和控制温度来进一步降低漏孔校准的不确定度. 相似文献
2.
固定流导法是通过已知流导小孔的气体与真空漏孔流出的气体用四极质谱计进行比较,从而得到漏孔漏率的一种极为精确的方法。小孔是采用机械、激光等方法加工制成,在分子流条件下,小孔流导为一常数。运用此方法,建立了一套真空检漏校准装置以进行量值传递工作。为了保证校准数据的准确可靠性,需对该套装置的不确定度进行分析与评定。 相似文献
3.
4.
6.
为了减小现场环境与校准环境的差异对真空漏孔校准的影响,通过理论研究,设计了现场真空漏孔校准装置,可实现对真空漏孔的现场校准。考虑到现场真空漏孔校准装置需便于携带及搬运,装置的设计采用了分体式结构。现场真空漏孔校准装置由抽气系统、校准室系统、真空漏孔连接系统、流量输出系统、充气系统、定容室与压力测量系统及烘烤系统等7个部分组成,复合了定容法及固定流导法两种校准方法,预计真空漏孔校准范围为5×10-10~5×10-5 Pa?m3/s,合成标准不确定度为10%。 相似文献
7.
8.
9.
10.
11.
恒压式正压漏孔校准装置的设计 总被引:2,自引:0,他引:2
设计了基于恒压自动控制的正压漏孔校准装置,装置由供气和稳压系统、抽气系统、校准系统、测量与控制系统、恒温系统等五部分组成,可采用比例积分微分(PID)控制模式和压力微小波动控制模式校准正压漏孔。在装置的设计中,解决了计算机控制系统的设计、精密小活塞的加工和计量、平动机构的设计、恒温系统的设计等关键技术。装置的预计测量范围为4×10^-7Pa.m^3/s-5×10^-5Pa.m^3/s^-1,标准不确定度小于5%。 相似文献
12.
13.
针对真空密封件的密封性能评估,采用了基于标准漏孔比对的漏率测量方法,具体包括动态比对法和静态累积比对法,通过四极质谱仪比较标准漏孔和密封件流出气体产生的离子流,利用标准漏孔的已知漏率和四极质谱离子响应的线性外推,计算密封件的漏率。研制了一套密封件的漏率测量装置,装置极限真空可达10-7Pa量级,漏率测量范围为:10-7-10-14Pa·m3/s,可用于具有检漏接口的各类密封件的漏率测试。采用该装置的两种方法分别进行不锈钢刀口密封件的漏率测试。结果表明:动态比对法对该不锈钢刀口密封件的漏率测试误差较大,低于10-11Pa·m3/s量级的极低漏率密封件更适合采用静态累积比对法进行测试。 相似文献
14.
贝塞尔盒型能量分析仪由三部分组成 :一个圆筒形电极、一个中心圆盘和两个带中心孔的侧板 ,该分析仪结构简单、结实 ,十分适用于电离规和四极质谱计上。对电离规而言 ,分析仪被放置于电离器及离子收集器之间。在栅型电离器中所产生的离子被分离并注入到能量分析仪中。分析仪依据其激发的能量把电离器中产生的气相离子和栅网表面上脱附的电子激励解吸的离子分离开。如果应用一个法拉第杯型离子收集器和一个灵敏的直流放大器来进行离子流测量的话 ,那么该电离规测量范围在 10 - 1 0 ~ 10 - 3Pa之间。当二次电子倍增器采用脉冲计数方法时 ,所测量的压力范围在 10 - 1 1~ 10 - 6 Pa之间 (Ax TRAN,ISX2 ,U L VAC公司 ) .其典型灵敏度对氮气而言为 (6 .7± 0 .2 )× 10 - 3Pa- 1 和对氢而言为 (2 .3± 0 .0 4 )× 10 - 3Pa- 1 。对四极质谱计而言 ,能量分析仪被置于在电离器和四极滤质器之间。装有该分析仪的质谱计 ,给出了没有电子激励解吸离子的简单质谱。该分析仪能使四极质谱计的离子收集器免受从栅网表面发射的 X射线的辐射 ,和从电离器中的离子以及被激发的分子在退激励过程中释放的紫外线的辐射。这种屏蔽作用改善了在 10 - 3Pa范围内的气体中微量杂质的检测极限 ,使之降至亿分之几 相似文献
15.
超高/极高真空校准装置的研制 总被引:6,自引:4,他引:6
超高/极高真空校准装置由极高真空(XHV)系统、超高真空(UHV)系统、流量分流系统和供气系统四部分组成。使用磁悬浮涡轮分子泵和非蒸散型吸气剂泵组合抽气,在XHV校准室获得了10-10Pa的极高真空;提出了分流法校准真空规的方法,使校准下限延伸到10-10Pa;利用非蒸散型吸气剂泵对惰性气体无抽速的特性,使用惰性气体校准时,减小了校准下限的不确定度;提出了采用线性真空计测量激光小孔分子流流导的方法,减小了小孔流导的测量不确定度。校准装置复合了分流法、压力衰减法和直接测量法对真空规进行校准,压力校准范围为10-1Pa~10-10Pa,合成标准不确定度为0.41%~3.5%。 相似文献
16.
17.
极高真空校准室内残余气体的成分分析 总被引:1,自引:2,他引:1
用四极质谱计对316L不锈钢制作的极高真空(XHV)校准室在烘烤前、后的残余气体成分进行了分析。一个热阴极电离规(IE514)和一个四极质谱计(QMS200)连接在XHV校准室上。烘烤前,开、关热阴极电离规以及对其进行除气,放出的气体主要有H2O、CO、H2、CH4和CO2。烘烤后,开、关热阴极电离规以及对其进行除气,放出的气体主要有CO、H2、CO2和CH4。整个烘烤过程完成后2h,XHV校准室内的压力在室温下通过分子泵串联抽气机组抽至8.97×10-9Pa,用四极质谱计分析到的残余气体成分主要为H2和CO。整个烘烤过程完成后4h,打开非蒸散型吸气剂泵(NEGP)对XHV校准室抽气,结果表明NEGP对H2具有较大的抽速,但对碳氢类化合物(如CH4)和惰性气体几乎没有抽速。用NEGP对XHV校准室连续抽气72h后,XHV校准室内的压力从8.34×10-9Pa下降到9.12×10-10Pa。不锈钢XHV校准室内的残余气体成分中大量的CO和CO2主要来自于四极质谱计。 相似文献
18.
密封器件氦质谱细检漏包括压氦法(即背压法)和预充氦法.对于压氦法,通常靠粗检鉴别是否有大漏孔,但候检时间不可过长,以免可能存在的大漏孔处于分子流状态,不能靠粗检鉴别.本文给出了最长候检时间表达式,以便既避免漏检又做好被检器件表面的净化工作.预充氦法的优点是可检测的最小等效标准漏率比压氦法低好几个量级.但用户复检时,候检时间往往已很长,如果仅靠通常的压氦法复检加粗检则发挥不出预充氦法的优点.本文改进了预充氦法:提出候检时间存在两个特征点,并给出了表达式;还对压氦法复检加粗检赋于新的重要功能,从而可以针对各种情况,用不同方法和判据,判断漏率是否合格.因此,即使候检时间已很长,仍有可能充分发挥预充氦法优点,并在漏率合格时给出被检器件的等效标准漏率. 相似文献
19.
Thelowerlimitofthepressuremeasurementofanionizationgaugeismainlydeterminedbythreefactors :thesoftX rayeffect ,electronstimulateddesorption (ESD) ,andoutgassingfromthegauge .Manytypesofionizationgaugeshavebeendevelopedtoreducethesefactors .A mongthemthegauge… 相似文献
20.
Stability tests of two quadrupole mass spectrometers (QMSs) were performed using a two-stage flow-dividing system from the following viewpoints: (1) fluctuation and drift of ion current, (2) repeatability of ion current, (3) change in ion current owing to prior conditions of use, (4) long-term stability of sensitivity, and (5) interference effect. These tests were performed at the pressure from 8 × 10−6 Pa to 8 × 10−4 Pa using N2, Ar, He, and H2.The fluctuation and drift of two QMSs over 1 h were within 2%. The repeatabilities at pressures of 8 × 10−6 Pa and 8 × 10−5 Pa were within 2% during eight cycles with an interval of 1 h between each cycle. However, the repeatability at 8 × 10−4 Pa increased to be within 4%. The changes in sensitivities of QMS-1 and QMS-2 for 757 days were less than ±15% and less than ±25%, respectively. The change owing to the interference effect was less than 2% while the partial pressure of the interference gas was under 2 × 10−4 Pa. However, both positive and negative changes were observed less than 60% with increasing the partial pressure of the interference gas until 8 × 10−3 Pa. 相似文献