首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
彭志平  陈珂 《电子学报》2007,35(8):1452-1457
解决协商僵局问题是协商优化中的重要研究课题.利用协商议题之间的相关性,提出了一种用于消解双边多议题协商僵局的多目标粒子群优化算法(MOPSO).MOPSO首先动态放宽僵局议题的保留值,然后将僵局议题相关的多个议题的保留值缩紧问题转化为一个多目标优化问题,通过粒子群搜索到Pareto最优解集,从而并行优化了这些相关议题的保留值,最后在不降低协商者整体利益条件下进行协商议题保留值向量等效置换.实验验证了MOPSO是有效的,其僵局解决能力明显比现有的其他方法强.  相似文献   

2.
本文提出了一种基于动态交换策略的快速多目标粒子群优化算法,通过把初始种群分割成Pareto和Non_Pareto集合,并在迭代过程中对Pareto解集进行动态调整,从而较好地完成了多目标优化算法对Pareto解集的搜索和逼近.实验和应用实例均表明了该算法的有效性和快速性,并通过性能指标ER的计算验证了本算法优于某些同类的多目标优化算法.  相似文献   

3.
为改善多目标粒子群算法的收敛性和多样性,通过对粒子群算法全局极值和个体极值选取方式的研究,采用随机选取和评估选取相结合的方法选取全局极值和个体极值,提出了一种可用于解决多目标优化问题的粒子群优化算法,从而实现了对多目标优化问题的非劣最优解集的搜索,仿真实验结果证明算法是有效的。  相似文献   

4.
《现代电子技术》2017,(9):78-81
根据对粒子个体的非支配排序和计算拥挤距离,提出一种改进的多目标粒子群优化(IMOPSO)算法。将IMOPSO应用于DCT域数字水印系统设计,提出基于多目标粒子群优化的数字水印算法。该算法以水印嵌入位置作为粒子的解,以不可见性(PSNR)和鲁棒性(NC)作为两个优化目标,得到数字水印系统的最优解集。实验结果表明,提出的算法得到多种满足PSNR值和NC值平衡的水印嵌入方案。与其他相关算法在同等条件下相比较,算法满足水印不可见性的同时,在噪声、压缩、裁剪等攻击下具有较好的鲁棒性。  相似文献   

5.
多维切割问题是木材加工、机加工和造纸等行业在生产中经常遇见的实际问题。排样切割完成后,往往都会有一些大小不等、数量不同的剩余材料。本文优化利用这些材料,进一步减少浪费。通过和贪心启发式算法的比较,证明该混合算法对解决多目标二维切割问题是行之有效的。  相似文献   

6.
朱大林  詹腾  张屹  郑小东 《电子学报》2014,42(9):1831-1838
为了增加Pareto解集的多样性,平衡多目标优化的全局搜索和局部寻优的能力,提出一种多策略差分进化的元胞多目标粒子群算法.该算法在分析粒子群优化原理基础上,将元胞自动机理论融入粒子群算法,研究粒子种群的交流结构和信息传递机制.为了避免粒子飞行速度过快陷入局部收敛,提出一种限制粒子飞行速度的策略,并引入一种多策略差分进化选择算子增加对粒子的扰动.实验证明,该算法相对于比较算法,有更好的收敛性和多样性.  相似文献   

7.
孙欣  那彦  王赟鹏 《电子科技》2014,27(10):40-42
在多传感器图像融合研究领域,基于频域的多尺度变换融合算法是研究的热点,文中提出一种基于多目标粒子群优化算法,对已有的基于Contourlet变换融合方法得到的融合结果图像集,在空域进行进一步处理的图像融合算法。实验结果表明,该算法具有较好的融合效果。  相似文献   

8.
韩红桂  阿音嘎  张璐  乔俊飞 《电子学报》2020,48(7):1245-1254
为了提高多目标粒子群优化算法解的分布性,文中提出了一种自适应分解式多目标粒子群优化算法(Adaptive Multiobjective Particle Swarm Optimization based on Decomposed Archive,AMOPSO-DA).首先,设计了一种基于优化解空间分布信息的外部档案更新策略,有效提升了AMOPSO-DA的空间搜索能力;其次,提出了一种基于粒子进化方向信息的飞行参数调整方法,有效平衡了AMOPSO-DA的探索和开发能力.最后,将提出的AMOPSO-DA应用于多目标优化问题,实验结果表明,文中提出的AMOPSO-DA能够获得分布性较好的优化解.  相似文献   

9.
为了使钻进过程达到最优,提出了基于机械钻速、钻头寿命和钻头比能的钻进参数多目标优化模型。参考典型的多目标优化进化算法NSGA-Ⅱ,提出了一种多目标粒子群算法(MOPSO)。采用一个钻进参数优化实例对优化模型和算法进行检验,得到分布均匀的Pareto最优解,一些最优解与传统的钻进参数单目标优化的解近似;讨论了算法中的种群规模、迭代次数和外部档案规模三个参数,得到一组兼顾解质量和计算时间的参数值,其计算时间的统计结果证明模型和算法满足钻进参数动态优化的要求。  相似文献   

10.
谢承旺  张飞龙  陆建波  肖驰  龙广林 《电子学报》2019,47(11):2359-2367
现实中的多目标优化问题不断增多且日益复杂,需要不断发展新型启发式算法应对挑战.提出一种多策略协同的多目标萤火虫算法MOFA-MCS.该算法采用均匀化与随机化相结合的方法产生初始种群;利用档案集中的精英解个体指导萤火虫移动;并在移动的过程施加Lévy flights随机扰动;最后,利用ε-三点最短路径策略维护档案解群的多样性.MOFA-MCS算法与其他6种经典的多目标进化算法一同在12个基准的多目标测试问题上进行实验,结果表明所提算法在收敛性、多样性方面总体上具有显著的性能优势.  相似文献   

11.
张世文  李智勇  林亚平 《电子学报》2015,43(8):1488-1498
本文针对复杂多目标优化问题Pareto前沿搜索难度大的特点,设计了一种结合多种群间捕获竞争、强化学习机制的多种群Memetic学习策略与进化计算模型.受种群进化、捕食种群与被捕食群体间的竞争等生态学原理的启发,提出了一种基于生态种群捕获竞争模型的多目标Memetic优化算法(Multi-Objective Memetic Algorithm based on Ecological Population Preying-competition Model,ECPM-MOMA).ECPM-MOMA算法设计并运用了捕获竞争、强化学习算子进行全局搜索,在种群进化过程中结合了Memetic搜索算子进行局部搜索.理论分析与实验结果表明,本文所提出的算法具有良好的收敛性能和分布特征,生态种群捕获竞争策略与进化计算模型对于解决复杂多目标优化问题是有效的.  相似文献   

12.
针对认知无线网络中的引擎参数调整问题,提出了一种基于拟态物理学多目标优化的求解算法.根据认知参数编码的二进制特点,设计了基于海明距离的个体排序方法,并改进了微粒的更新方程,最后求出问题的Pareto最优解集.多载波环境下的仿真实验表明,算法可以根据无线信道环境的动态变化和认知用户需求的不同需求,自适应调整各个子载波的调制方式和发射功率,满足参数优化需求.  相似文献   

13.
均匀搜索粒子群算法   总被引:9,自引:2,他引:9       下载免费PDF全文
吴晓军  杨战中  赵明 《电子学报》2011,39(6):1261-1266
针对基本粒子群优化算法容易陷入局部最优解的问题,本文定义了PSO粒子搜索中心的概念,并对其随机状态下粒子搜索中心在全局最优解与局部最优解之间的概率密度进行了计算,在此基础上提出了粒子搜索中心在两个最优解之间均匀分布的均匀搜索粒子群算法,并通过7个Benchmark函数与基本PSO算法进行了对比实验及算法分析,实验分析结...  相似文献   

14.
用于约束优化的简洁多目标微粒群优化算法   总被引:3,自引:0,他引:3       下载免费PDF全文
张勇  巩敦卫  任永强  张建化 《电子学报》2011,39(6):1436-1440
本文提出了一种少控制参数的约束多目标微粒群优化算法.该算法利用关于微粒全局和个体最优点的高斯分布来更新微粒的位置,无需设置惯性权重和学习因子等控制参数;利用非可行储备集保存所得非可行解,给出一种改进的储备集更新方法;为均衡微粒对未知可行域和已知可行域的开发/探索能力,提出一种线性递减策略,用来分配微粒从非可行储备集中选...  相似文献   

15.
一种改进粒子群优化算法   总被引:24,自引:0,他引:24  
作为群集智能的代表性方法之一,粒子群优化(PSO)算法通过粒子之间的合作与竞争以实现对多维复杂空间的高效搜索。提出了一种改进粒子群优化(MPSO)算法。MPSO同时采用局部模式压缩因子方法和全局模式惯性权重方法以获得相对较高的性能。针对PSO算法可能出现的停滞现象,MPSO引入了基于全局信息反馈的重新初始化机制。数值仿真结果显示了该算法的有效性。  相似文献   

16.
研究工作流服务主体优选问题,在工作流系统中,工作机负载能力有差异性,而且整个系统负载具有动态性,传统算法难以获得最优工作流服务主体优选方案,导致系统资源利用率较低.为了提高系统资源利用率,系统负载保持均衡,提出一种粒子群算法的工作流服务主体优选方法.首先对工作流服务主体优选问题建立相应数学模型,然后采用粒子群算法对其进行求解,即工作流服务主体最优选择方案,最后进行仿真测试.测试结果表明,相对于传统方法,粒子群算法可以针对不同类型的任务分配不同的工作机,实现系统多种资源的负载均衡,提高系统资源的利用率.  相似文献   

17.
针对传统粒子群算法(PSO)中存在的易陷入局部最优解和后期收敛速度慢的问题,首次提出一种新混合粒子群算法(NHPSO),采用杂交粒子群算法和固定惯性权重策略,并把简化的二次插值法融入杂交粒子群算法中。实验证明新算法大大提高了收敛速度,改善了解的质量。对阵列天线特殊主瓣形式的波束赋形和旁瓣电平优化结果取得了非常好的效果,计算机仿真证实该新算法应用于此类问题非常有效。  相似文献   

18.
一种新型多步式位置可选择更新粒子群优化算法   总被引:1,自引:3,他引:1       下载免费PDF全文
高芳  崔刚  吴智博  杨孝宗 《电子学报》2009,37(3):529-534
 粒子群优化(PSO)算法是一种新兴的群体智能优化技术,其由于具有原理简单、参数少、效果好等优点已获得广泛研究和应用.粒子个体极值更新速率低是影响该算法收敛速度和精度的主要因素之一.本文提出一种新型多步式位置可选择更新的粒子群算法,把标准粒子群中速度的单步更新公式分解成三步更新,取所生成的3个位置中的最好位置作为最终结果,细化了粒子的搜索轨迹、在不增加算法复杂度条件下提高了个体极值以及全局极值的更新速率,因而改善了算法的收敛速度和精度.采用Sphere、Rosenbrock等6个经典测试函数,并按照固定迭代次数运行和固定时间长度运行两种方法进行测试.测试结果表明该算法简单、稳健、高效,而且明显优于现有的4种经典粒子群算法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号