共查询到20条相似文献,搜索用时 15 毫秒
1.
Silicon carbide (SiC) was prepared by carbothermal reduction with amorphous silica sol as silicon source and bamboo charcoal powder as carbon source. The compositions and microstructure of prepared SiC were investigated by using X-ray diffraction (XRD), scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDS). XRD of prepared SiC showed that the major phase of prepared SiC was hexagonal 6H-SiC with the existence of some 4H-SiC. SEM showed that SiC particle was granular, rod-like and of tower-shape, and it inherited the shape of bamboo charcoal. EDS showed that prepared SiC was pure without being doped by the mineral elements from bamboo charcoal. 相似文献
2.
Favourable conditions for the growth of good quality silicon carbide (SiC) whiskers from rice husk have been discussed in
the light of available evidence on the probable growth mechanism and the theoretical understanding of the same. Preliminary
results indicate an increase in whisker yield at lower temperatures and coarsening of whiskers with longer duration of conversion. 相似文献
3.
Qiaomu Liu 《Materials Letters》2010,64(4):552-4303
Zirconium carbide and silicon carbide hybrid whiskers were codeposited by chemical vapour deposition using methyl trichlorosilane, zirconium chloride, methane and hydrogen as the precursors. The zirconium carbide and silicon carbide whiskers were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The results indicate that the codeposition process is more effective in the presence of methane than in the absence of methane. The codeposition process and the growth of zirconium carbide in the whiskers can be accelerated at high temperature in the presence of methane. A growth model was proposed based on the deposition model of carbon, zirconium carbide and silicon carbide. 相似文献
4.
Excimer (XeCl) laser pulses, 15 ns in duration and with fluences up to 10 J · cm–2, have been employed to induce melting and evaporation of 6H-SiC thin layers in vacuum. Sample surface modification in the nanosecond time scale have been tnonitorizedin situ by optical probing. Eventually, the ablation product was collected on silicon single-crystal substrates placed in front of the SiC target. Modeling of the heating and the thermal evaporation processes resulted in estimation of surface temperatures as high as 10,000 K, evaporation rates of the order of 1025 molecules · cm–2 · s–1 and recoil pressures of the order of 1 GPa. Comparison with experiments showed that the simple mechanism of purely thermal evaporation is able to describe the process of particle removal from a surface by short laser pulses only in the low-energy density range. Above a certain threshold the model breaks down and other mechanisms have to be considered.Paper presented at the Fourth International Workshop on Subsecond Thermophysics, June 27–29, 1995, Köln, Germany. 相似文献
5.
W?odzimierz JankeAneta Hapka 《Materials Science and Engineering: B》2011,176(4):289-292
In the paper, the dynamic nonlinear model of SiC devices is proposed, where the dependencies of the thermal parameters on the temperature are included. The proposed model is applicable and useful in the simulations of electro-thermal transients in the devices working with high power density and in the wide range of temperature. 相似文献
6.
Preparation of hierarchical porous carbon by post activation 总被引:1,自引:0,他引:1
A series of hierarchical porous carbons (HPCs) have been prepared by a combination of soft-templating and post activation. As evidenced by N2 sorption tests, the pristine mesopores were basically preserved and micropores were generated on the mesopore wall of mesoporous carbon (MC). The micropore generation on the mesoporous skeleton can be controlled by simply adjusting the KOH ratio and activation temperature. The BET surface area, mesopore surface area and total pore volume of the HPCs increase monotonously with increasing activation temperature and KOH/MC ratio. In contrast, the micropore surface area reaches the maximum at the ratio of KOH/MC of 4. Further increase of KOH/MC ratio and activation temperature reduces the micropore surface area. Structural characterizations confirm that the main mesopore channel was preserved during activation. 相似文献
7.
Sangeeta Handuja Sarab Preet Singh P. Srivastava V.D. Vankar 《Materials Letters》2009,63(15):1249-1251
Vertically aligned long carbon nanotubes in the range of 80-100 µm have been synthesized on amorphous hydrogenated silicon nitride (a-SiNx:H) coated silicon substrate by thermal chemical vapor deposition of ferrocene and xylene. It is observed that high temperature annealing in oxygen ambient results in formation of crystalline silicon dioxide in the matrix of amorphous silicon nitride due to out diffusion of hydrogen. It is suggested that active sites created on silicon dioxide and a-SiNx:H clusters provide mechanical support for the alignment of long carbon nanotubes. It is proposed that a thin layer of a-SiNx:H prevents silicide formation between the catalyst (Fe) and silicon thus lengthening the catalyst life. 相似文献
8.
Parkpoom Lorjai Sujitra Wongkasemjit Thanyalak Chaisuwan 《Materials Science and Engineering: A》2009,527(1-2):77-84
An organic foam derived from a new type of phenolic resin, namely polybenzoxazine, was successfully prepared with a noncomplex and economical foaming method by using azodicarbonamide (AZD) as a foaming agent. The influence of foam density on the physical and mechanical properties of the foams was studied. All resulting polybenzoxazine foams and carbon foams exhibit a tailorable uniform microstructure. Polybenzoxazine foams showed a density in the range of 273–407 kg/m3, and a compressive strength and a compressive modulus in the range of 5.2–12.4 MPa and 268–681 MPa, respectively. The foam density not only affects the physical and mechanical properties, but also affects the deformation response of the foam. In addition, the polybenzoxazine foam was further transformed into carbon foam by carbonization at 800 °C under an inert atmosphere, and its properties were examined. 相似文献
9.
Yu. F. Kargin S. N. Ivicheva A. S. Lysenkov N. A. Alad’ev S. V. Kutsev L. I. Shvorneva 《Inorganic Materials》2009,45(7):758-766
Silicon carbide whiskers have been prepared by sintering silicon nitride powder in a graphite reactor at 1800°C under a nitrogen atmosphere. The whiskers differ in morphology: tubular needles, hollow faceted fibers with a square cross section, and solid fibers with a triangular cross section. The average diameter of the needles is 0.5?5 μm, and that of the faceted fibers is up to 20 μm. The fibers range in length up to several millimeters. Such silicon carbide whiskers can be used as reinforcing agents for structural ceramics based on nonoxide materials. 相似文献
10.
Highly crystalline silicon carbide films were synthesised by HWCVD technique. Raman spectroscopic studies show that the SiC films contain crystalline SiC and also carbon phases. Carbon is graphitic at higher chamber pressures (≥ 50 Pa) and resembles diamond-like carbon at low pressure (5 Pa). Cross-section TEM results show a columnar morphology of the crystallites with typical column diameters up to ∼ 50 nm. Transmission electron diffraction patterns reveal SiC in its cubic and hexagonal SiC phases and the C diamond phase at low pressure. Annealing at 1000 °C for 1 h results in enhancement of crystallite size without nucleation of new phases. 相似文献
11.
在1600℃不同真空度下, 采用热蒸发硅的方法, 在石墨基板和聚丙烯腈(PAN)炭纤维两种碳源基体原位生长具有一定取向的碳化硅纳米晶须——垂直于石墨片表面森林状和试管刷状碳化硅纳米晶须阵列。通过X射线衍射及场发射扫描电镜, 发现晶须为3C-SiC, 直径约100nm, 长度约50μm。炭纤维表面的产物顶端多为针尖状, 而石墨片表面的产物多为六方棱柱状。因其纳米尺寸效应, 在380nm波长的光激发下, 所制晶须在波长为468nm 附近出现光致发光峰。透射电镜、 多点衍射电子衍射图表明, 所制得的3C-SiC晶须为单晶, 其生长方向为3C-SiC的[111]方向。基于反应过程中硅熔体与碳源分离的事实, 讨论了3C-SiC晶须阵列生长的气固反应机理。 相似文献
12.
An overview on microstructural and electronic properties of stoichiometric microcrystalline silicon carbide (μc-SiC) prepared by Hot-Wire Chemical Vapor Deposition (HWCVD) at low substrate temperatures will be given. The electronic properties are strongly dependent on crystalline phase, local bonding, strain, defects, impurities, etc. Therefore these quantities need to be carefully investigated in order to evaluate their influence and to develop strategies for material improvement. We will particularly address the validity of different experimental methods like Raman spectroscopy and IR spectroscopy to provide information on the crystalline volume fraction by comparing the results with Transmission Electron Microscopy (TEM) and X-Ray diffraction data. Finally the electronic properties as derived from optical absorption and transport measurements will be related to the microstructure. 相似文献
13.
Silicon nitride-silicon carbide (Si3N4-SiC) composites were prepared by varying the percentage of silicon nitride at temperatures of 1350 to 1450°C. The mechanical
and thermal properties of these composites were determined. The modulus of rupture of the composites increases with increase
of temperature whereas the thermal expansion decreases. Composites with 10% and 50% Si3N4 have modulus of rupture of 49 and 86 MPa at 1400°C and thermal expansion coefficients (25°–1000°C) of 4·4 × 10−6 and 3·2 × 10−6°C−1 respectively. 相似文献
14.
Harvey A. Liu 《Materials Letters》2009,63(27):2361-2364
Silicon carbide exhibits many unique properties such as its mechanical robustness, chemical inertness, and thermal stability, which make the material appealing for many applications. Some of these applications include its use as a support for nanocomposites or as a high temperature filter material. The ability to fabricate nanofibers of SiC could enhance its utility in these applications. In the current study, nanofibers of β-SiC have been fabricated through the technique of concentric electrospinning. This method demonstrates the ability to fabricate uniform SiC nanofibers with a diameter ranging from 1 to 2 nm, the smallest to date. 相似文献
15.
The spall strength of silicon carbide and boron carbide ceramics processed by spark plasma sintering
The spall strength of silicon carbide (SiC) and boron carbide (B4C) ceramics processed by Spark Plasma Sintering (SPS) has been studied as a function of the loading stress. In the course of the planar impact experiments, the velocity of either the sample free surface or of the sample–window interface was continuously monitored by a Velocity Interferometer System for Any Reflector (VISAR). With the increase of impact stress the spall strength of both ceramics, increases initially and then declines monotonously until it vanishes almost completely, as the impact stress approaches the respective Hugoniot Elasic Limit (HEL). The mechanisms that may account for that behavior and, in particular, the role of the compressive wing cracks in the onset of the spall strength decline are discussed. 相似文献
16.
Cuicui ZhangChunxiao Wang Liang Zhan Can WangYanli Wang Licheng Ling 《Materials Letters》2011,65(12):1889-1891
Mesophase pitch based carbon foam (MPCF) covered with a layer of carbon nanofibers (CNFs) was prepared as catalyst support for gas phase catalytic reactions. Owing to the CNF layer, the specific surface area of MPCF increases from 40 to 198 m2/g. This kind of catalyst support plays an important role in the enhancement of mass/heat transfer due to the large external surface area, high porosity and high thermal conductivity. When selective catalytic NO reduction was taken as a model reaction, more than 90% NO conversion could be achieved in a wide temperature range of 180-220 °C over MnOx-CeO2/MPCF-CNF catalyst. 相似文献
17.
Silicon carbide (SiC) nanowires were fabricated in a large quantity by a rapid heating carbothermal reduction of a novel resorcinol-formaldehyde (RF)/SiO2 hybrid aerogel in this study. SiC nanowires were grown at 1500 °C for 2 h in an argon atmosphere without any catalyst via vapor-solid (V-S) process. The β-SiC nanowires were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) equipped with energy dispersive X-ray (EDX) facility, Fourier transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The analysis results show that the aspect ratio of the SiC nanowires via the rapid heating process is much larger than that of the sample produced via gradual heating process. The SiC nanowires are single crystalline β-SiC phase with diameters of about 20-80 nm and lengths of about several tens of micrometers, growing along the [1 1 1] direction with a fringe spacing of 0.25 nm. The role of the interpenetrating network of RF/SiO2 hybrid aerogel in the carbothermal reduction was discussed and the possible growth mechanism of the nanowires is analyzed. 相似文献
18.
A thin layer of poly (vinyl alcohol) (PVA) was coated on the surface of silicon carbide whiskers (SCWs) and crosslinked by glutaraldehyde, and then these modified whiskers (mSCWs) were incorporated into high density polyethylene (HDPE) to prepare HDPE/mSCW composites with a high thermal conductivity. The thermal conductivity, mechanical properties, heat resistance, thermal stability and morphology of HDPE/mSCW and HDPE/SCW composites were characterized and compared. The results reveal that the thermal conductivity of both HDPE/SCW and HDPE/mSCW composites increases with the increase of filler loading, and reaches a maximum of 1.48 and 1.69?W/(m?K) at 40?wt% filler loading, which is 251.2% and 300.75% higher than that of HDPE, respectively. Significantly, HDPE/mSCW composites have a higher thermal conductivity than their HDPE/SCW counterparts with the same filler loading. In addition, the heat resistance, Young’s modulus and yield strength of both HDPE/SCW and HDPE/mSCW composites are also improved compared with that of HDPE. mSCW can be homogenously dispersed in the HDPE matrix, which contributes to the formation of thermally conductive networks by the inter-connection of mSCWs. 相似文献
19.
Si diffusion in magnetron sputtered silicon carbide films deposited on silicon and carbon substrates
Self-diffusion of silicon in magnetron sputtered silicon carbide films deposited on different substrates (crystalline silicon and glassy carbon) is investigated. Since crystallization of amorphous silicon carbide films strongly depends on the substrate, the diffusivity of silicon is expected to depend on the substrate as well. Isotope hetero-structures and secondary ion mass spectrometry were used for analysis. For amorphous samples an upper limit of the diffusivity of 1 × 10− 21 m2/s is derived at 1100 C°. For crystallized films diffusivities between 1350 °C and 1600 °C are found to be not significantly different for the two types of substrates. For samples deposited on glassy carbon substrates an activation enthalpy ΔHD = (8.7 ± 0.9) eV was found for the self-diffusion of Si. The consequences of our findings for crystallization are discussed. 相似文献
20.
Gas tunnel type plasma spraying deposition has been applied successfully to the deposition of the SiC films on stainless-steel substrates. The microstructure and the surface morphology of the SiC films were characterized by means of X-ray diffraction (XRD) and scanning electron microscope (SEM). The control of the processing parameters such as powder feeding rate, composition of plasma working gases, spraying distance, and carrier gas flow rate allowed the deposition of dense, uniform, continuous, and high purity crystalline SiC films. The thickness of the SiC films varied from 3 to 10 μm. EDS analysis confirmed the presence of SiO2 in the deposited SiC films. 相似文献