共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fe(3)O(4)-Ca(3)(PO(4))(2) core-shell nanoparticles were prepared by one-pot non-aqueous nanoemulsion with the assistance of a biocompatible triblock copolymer, poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO), integrating the magnetic properties of Fe(3)O(4) and the bioactive functions of Ca(3)(PO(4))(2) into single entities. The Fe(3)O(4) nanoparticles were pre-formed first by thermal reduction of Fe(acac)(3) and then the Ca(3)(PO(4))(2) layer was coated by simultaneous deposition of Ca(2+) and PO(4)(3-). The characterization shows that the combination of the two materials into a core-shell nanostructure retains the magnetic properties and the Ca(3)(PO(4))(2) shell forms an hcp phase (a = 7.490 ?, c = 9.534 ?) on the Fe(3)O(4) surface. The magnetic hysteresis curves of the nanoparticles were further elucidated by the Langevin equation, giving an estimation of the effective magnetic dimension of the nanoparticles and reflecting the enhanced susceptibility response as a result of the surface covering. Fourier transform infrared (FTIR) analysis provides the characteristic vibrations of Ca(3)(PO(4))(2) and the presence of the polymer surfactant on the nanoparticle surface. Moreover, the nanoparticles could be directly transferred to water and the aqueous dispersion-collection process of the nanoparticles was demonstrated for application readiness of such core-shell nanostructures in an aqueous medium. Thus, the construction of Fe(3)O(4) and Ca(3)(PO(4))(2) in the core-shell nanostructure has conspicuously led to enhanced performance and multi-functionalities, offering various possible applications of the nanoparticles. 相似文献
2.
We report the synthesis of Fe3O4@C core-shell nanoparticles (FCNPs) by using a facile one-step solvothermal method. The FCNPs consisted of Fe3O4 particles as the cores and amorphous uniform carbon shells. The content of Fe3O4 is up to 81.6 wt%. These core-shell nanoparticles are aggregated by primary nanocrystals with a size of 10-12 nm. The FCNPs possess a hollow interior, high magnetization, excellent absorption properties and abundant surface hydroxyl groups. A possible growth mechanism of the FCNPs is proposed. The role of glucose in regulating the grain size and morphology of the particles is discussed. The absorption properties of the FCNPs towards Cr(VI) in aqueous solution is investigated. We demonstrate that the FCNPs can effectively remove more than 90 wt% of Cr(VI) from aqueous solution. 相似文献
3.
《Advanced Powder Technology》2020,31(1):332-338
For years, it has been widely held that triboelectrification is not the sought-after technique to develop innovative materials with enhanced functionalities. In this study, we tried to break such a traditional concept and find its ever-expanding roles in material science. In our strategy, triboelectrification brought adequate charge to particles, so as to achieve their mono-dispersity in solutions. Following this strategy, the synthesis of mono-dispersed Fe3O4-SiO2 core-shell particles involved two-stage triboelectrification treatment. In the first-stage treatment, positive triboelectric charges on Fe3O4 cores ensured their uniform SiO2 coating and well-defined core-shell structure. In the second-stage treatment, positive triboelectric charges on Fe3O4-SiO2 core-shell particles guaranteed their mono-dispersity for further biological use. The Zeta potential of these triboelectrically-treated Fe3O4-SiO2 core-shell particles still maintained at ca. +55 mV after standing for two months, and their conglomeration was negligible owing to their limited increase in hydrodynamic size. Besides, their excellent linearity between relaxivities and iron concentration, and their virtually unchanged r2/r1 ratio within two months manifested that triboelectrification can be a promising technique in fabricating advanced materials. 相似文献
4.
Taazayet Wael Ben Zouari Ikbel Mallek Hosni Nabil Dkhil Brahim Mliki Najeh Thabet 《Journal of Materials Science: Materials in Electronics》2022,33(5):2518-2533
Journal of Materials Science: Materials in Electronics - In the present work, pure BiFeO3 and pure Bi2Fe4O9 single phases were successfully synthesized by tailoring hydrothermal synthesis route.... 相似文献
5.
ZhangSheng Liu BianTao Wu DaGen Yin YaBo Zhu LianGuo Wang 《Journal of Materials Science》2012,47(19):6777-6783
Bi2(Fe1−x Al x )4O9 (x = 0, 0.1, 0.3, 0.5, and 0.7) samples were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction, scanning electron microscopy, Fourier transformed infrared spectra, N2-sorption, and UV–Vis diffuse reflectance spectra, and their photocatalytic activities were evaluated by the degradation of methyl orange under visible-light irradiation. The results reveal that the Al substitution can effectively improve photocatalytic performance, which is attributed to the increase of surface area, the improvement of energy band structure, and the distortion of the Fe–O octahedron in Al-substituted samples. In addition, it is found that the photocatalytic activity to decompose methyl orange under visible-light illumination increases monotonically as x increases from zero to 0.5 in Bi2(Fe1−x Al x )4O9 and then decreases for x = 0.7, which is believed to be associated with the distribution of Fe3+ ions over the octahedral and tetrahedral sites. 相似文献
6.
Dumbbell-like Au-Fe(3)O(4) nanoparticles are synthesized using decomposition of Fe(CO)(5) on the surface of the Au nanoparticles followed by oxidation in 1-octadecene solvent. The size of the particles is tuned from 2 to 8 nm for Au and 4 nm to 20 nm for Fe(3)O(4). The particles show the characteristic surface plasmon absorption of Au and the magnetic properties of Fe(3)O(4) that are affected by the interactions between Au and Fe(3)O(4). The dumbbell is formed through epitaxial growth of iron oxide on the Au seeds, and the growth can be affected by the polarity of the solvent, as the use of diphenyl ether results in flower-like Au-Fe(3)O(4) nanoparticles. 相似文献
7.
8.
Qiong Liu Ju Li Xin Zhong Zan Dai Zhong Lu Hao Yang Rong Chen 《Advanced Powder Technology》2018,29(9):2082-2090
In this work, sphere-like Ag/Bi2O3 nanocomposites with the average size of ca. 170?nm were successfully synthesized by simple deposition-precipitation method. The antibacterial activities of as-prepared Ag/Bi2O3 nanocomposites were evaluated by minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and colony counting methods. It was found that Ag/Bi2O3 nanocomposites displayed greatly improved antibacterial ability against common pathogenic Gram-positive and Gram-negative bacteria in comparison with single-component Bi2O3 nanospheres. More importantly, Ag/Bi2O3 nanocomposites exhibited remarkably outstanding antibacterial activities against clinical drug-resistant bacteria. The antibacterial activity of Ag/Bi2O3 nanocomposite increased with the increase of Ag content and 15?wt% Ag/Bi2O3 nanocomposites showed the highest antibacterial activity. Furthermore, a plausible antibacterial mechanism of Ag/Bi2O3 nanocomposite was proposed. It was believed that the enhanced generation of H2O2 could lead to the membrane leakage of cytosol and the inactivation of respiratory chain dehydrogenaes, which was possibly responsible for the enhanced antibacterial activities of nanocomposites. 相似文献
9.
1. IntroductionIron oxides include several crystalline forms:hematite (or-FeZO3), magnetite (Fe3O4), maghemite(7-Felon) and wustite (FeO). They have interesting structural and magnetic properties, and are practically important in magnetic and electronic applications. The strongly ferrimagnetic 7--FeZO3 phaseearned much attention due to their applications asrecording media. The attainment of 7-FeZO3 involves complicated processing[1]. In our previousstudies, high coercivity 7-FeZO3, Fe3… 相似文献
10.
Nano-Micro Letters - As BiVO4 is one of the most popular visible-light-responding photocatalysts, it has been widely used for visible-light-driven water splitting and environmental purification.... 相似文献
11.
Zhou W Hu X Bai X Zhou S Sun C Yan J Chen P 《ACS applied materials & interfaces》2011,3(10):3839-3845
Highly regulated core-shell Fe(3)O(4)-poly(3, 4-ethylenedioxythiophene) (PEDOT) microspheres were successfully synthesized by a two-step method in the presence of polyvinyl alcohol (PVA) and p-toluenesulfonic acid (p-TSA). And their morphology, microstructure, electromagnetic and microwave absorbing properties were subsequently characterized. By simply adjusting the molar ratio of 3, 4-ethylenedioxythiophene (EDOT) to Fe(3)O(4) (represented by (EDOT)/(Fe(3)O(4))), the thickness of the polymer shell can be tuned from tens to hundreds of nanometers. Moreover, it was found that the composite exhibited excellent microwave absorbing property with a minimum reflection loss (RL) of about -30 dB at 9.5 GHz with a (EDOT)/(Fe(3)O(4)) ratio of 20. 相似文献
13.
Shell-core nanostructures with both high catalytic activation and recyclability have been becoming hot property in nano-catalysis. By respectively using co-precipitation method, sol-gel method, and homogeneous precipitation method we manufactured shell-core nano-particles of Fe3O4 core and MnO2 shell. The Bonding mechanism of the composite is discussed in detail, and the efficiency and nature of the particles to degrade methyl orange by catalyzing H2O2 is also demonstrated. We show that by using homogeneous precipitation method one can obtain morphologically uniform nano-particles of about 5-6 nm MnO2 shell and 13-14 nm Fe3O4 core. The characteristic peak of Fe3O4 in the Infrared spectra of the composite particles was blue shifted, and a novel peak appears at 775.68 cm(-1) referring to occurrence of new bond. X-ray Photoelectron Spectroscopy analysis showed that the bonding energy of Fe2p and Ols was increased due to the combination of the MnO2 shell and the Fe3O4 core, suggesting a new bond of Fe-O-Mn occurred in the composite. The MnO2 shell has abundant hydroxyl radicals and exhibits high chemical activity in catalyzing H2O2 and degrading methyl orange with a degree of greater than 95%. On the other hand, the shell-core nanostructures are super-paramagnetic, and the saturated magnetization reaches 33.5 eum/g, which is sufficient for the catalyst to be recycled. 相似文献
14.
Dong A Lan S Huang J Wang T Zhao T Xiao L Wang W Zheng X Liu F Gao G Chen Y 《ACS applied materials & interfaces》2011,3(11):4228-4235
Magnetic/antibacterial bifunctional nanoparticles were fabricated through the immobilization of antibacterial N-halamine on silica-coated Fe(3)O(4)-decorated poly(styrene-co-acrylate acid) (PSA) nanoparticles. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectra (XPS), X-ray diffraction (XRD), energy-dispersive X-ray spectrometry (EDX), Fourier transform infrared (FTIR), and thermogravimetric analysis (TGA). The N-halamine was developed from the precursor 5,5-dimethylhydantoin (DMH) by chlorination treatment, and experimental results showed that the loading amount of DMH on the silica-coated Fe(3)O(4)-decorated poly(styrene-co-acrylate acid) nanoparticles was adjustable. The as-synthesized nanoparticles exhibited superparamagnetic behavior and had a saturation magnetization of 18.93 emu g(-1). Antibacterial tests showed that the resultant nanoparticles displayed enhanced antibacterial activity against both Gram-positive and Gram-negative bacteria compared with their bulk counterparts. 相似文献
15.
16.
The intrinsic peroxidase-like activity of magnetite (Fe3O4) has to be improved to activate H2O2 under mild conditions for practical applications. Herein fluorinated Fe3O4 microspheres (F-Fe3O4-r, r: 0.1–3), where r indicates the F/Fe molar ratio in the reaction mixture, were prepared by glycothermal synthesis and characterized by various complementary techniques. Fluoride ions were enriched on the surface of F-Fe3O4-1, and may substitute lattice oxygen or ion-exchange with surface hydroxyl groups. Kinetic study showed that the apparent activation energy for catalytic decomposition of H2O2 over F-Fe3O4-1 was significantly lower than those over unmodified Fe3O4 or other heterogeneous peroxidase-like catalysts (20.3 vs. 32.8–142?kJ?mol?1), which improved the low-temperature activity of the former (decomposition rate of H2O2 at 25?°C: 0.0150?h?1). Potential applications of F-Fe3O4-1 in wastewater treatment were demonstrated by catalytic degradation of orange G with H2O2 at pH 6.8 and 25?°C. 相似文献
17.
Development of highly active photocatalysts for treatment of dye-laden wastewaters is vital. The photocatalytic removal of azo dye Reactive Black 5 was investigated by Fe3O4-WO3-3-aminopropyltriethoxysilane (APTES) nanoparticles in the presence of visible light. The Fe3O4-WO3-APTES nanoparticles were synthesized via a facile coprecipitation method. The photocatalyst was characterized by XRD, FT-IR, SEM, EDX, VSM, UV–Vis, and pHPZC techniques. The effects of some operational parameters such as solution pH, nanophotocatalyst dosage, initial RB5 concentration, H2O2 concentration, different purging gases, and type of organic compounds on the removal efficiency were studied by the Fe3O4-WO3-APTES nanoparticles as a photocatalyst. Maximum phtocatalytic activity was obtained at pH 3. The photocatalytic removal of RB5 increased with increasing H2O2 concentration up to 5?mM. The removal efficiency declined in the presence of different purging gases and all types of organic compounds. First-order rate constant (kobs) decreased from 0.027 to 0.0022?min?1 and electrical energy per order (EEo) increased from 21.33 to 261.82 (kWh/m3) with increasing RB5 concentration from 10 to 100?mg/L, respectively. The efficiency of LED/Fe3O4-WO3-APTES process for RB5 removal was approximately 89.9%, which was more effective than the LED/Fe3O4-WO3 process (60.72%). Also, photocatalytic activity decreased after five successive cycles. 相似文献
18.
L-r Meng Weimeng Chen Yiwei Tan Lin Zou Chinping Chen Heping Zhou Qing Peng Yadong Li 《Nano Research》2011,4(4):370-375
We present a facile and controllable method for the large-scale fabrication of highly-ordered octahedral Fe3O4 colloidal “single crystals” without the assistance of a substrate. Oleic acid is used to reduce the solubility of the nano-building
blocks in colloidal solution and to induce a “crystallization” process. Our colloidal crystals are of multimicron size and
show typical crystallographic characteristics. They have a very robust structure and can serve as a novel ordered magnetic
mesoporous material with a relatively narrow pore size distribution. The sample possesses an extremely high Verwey transition
temperature (T
V) of 100 K and a high saturation magnetization (M
S) of 86 emu/g at 5 K based on its good crystallinity, as well as the interparticle dipolar interaction behavior arising from
its unique structure. Electrochemical measurements have demonstrated the excellent capacity of the mesoporous colloidal crystals
when used in lithium-ion batteries.
相似文献
19.
Tian Chen Jinhao Qiu Kongjun Zhu Yincheng Che Yun Zhang Jiamin Zhang Hao Li Fei Wang Zhenzhen Wang 《Journal of Materials Science: Materials in Electronics》2014,25(9):3664-3673
Fe3O4-reduced graphene oxide-polyaniline (Fe3O4–RGO–PANI) ternary electromagnetic wave absorbing materials were prepared by in situ polymerization of aniline monomer on the surface of Fe3O4–RGO nanocomposites. The morphology, structure and other physical properties of the nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, vibration sample magnetism, etc. The electromagnetic wave absorbing properties of composite materials were measured by using a vector network analyzer. The PANI–Fe3O4–RGO nanocomposites demonstrated that the maximum reflection loss was ?36.5 dB at 7.4 GHz with a thickness of 4.5 mm and the absorption bandwidth with the reflection loss below ?10 dB was up to 12.0 GHz with a thickness in the range of 2.5–5.0 mm, suggesting that the microwave absorption properties and the absorption bandwidth were greatly enhanced by coating with polyaniline (PANI). The strong absorption characteristics of PANI–Fe3O4–RGO ternary composites indicated their potential application as the electromagnetic wave absorbing material. 相似文献
20.
TiO2/Fe2O3核-壳粒子的制备及光学性能 总被引:3,自引:0,他引:3
钛酸四丁酯(TBOT)水解产生的TiO2沉积在单分散准球形α-Fe2O3颗粒的表面,形成均匀、连续的核-壳结构.TiO2壳层的厚度约为30 nm.在500℃热处理后,TiO2壳层从非晶态转变为锐钛矿结构.在光激发下,TiO2/Fe2O3核-壳粒子的电子从TiO2价带跃迁到能量较低的α-Fe2O3导带,在可见光区产生新的强吸收峰.光谱计算结果表明TiO2价带与α-Fe2O3导带的能量差为1.6 eV. 相似文献