首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chin A  Bérubé PR 《Water research》2005,39(10):2136-2144
The efficacy of using ozone (O3), ultraviolet irradiation (UV) and the combined O3-UV advanced oxidation process (AOP) to remove 2 classes of disinfection by-product (DBP) precursors from raw surface water samples have been evaluated and compared. In particular, trihalomethane and haloacetic acids formation potentials were measured. Laboratory batch scale experiments were carried out as a function of ozone and UV dosage in order to study the removal kinetics. It is concluded that the combined O3-UV AOP is more effective than either the ozone or UV treatment alone. Ozone-UV AOP is capable of mineralizing up to 50% of the total organic carbon from the raw source water at an ozone dose of 0.62+/-0.019 mg O3/mL and a UV dose of 1.61 W s/cm2. In addition, O3-UV AOP can reduce trihalomethane formation potential by roughly 80% and haloacetic acids formation potential by roughly 70% at the same ozone and UV dosage.  相似文献   

2.
Lee C  Yoon J  Von Gunten U 《Water research》2007,41(3):581-590
This study investigates the oxidative degradation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, by conventional ozonation and the advanced oxidation process ozone/hydrogen peroxide (AOP O(3)/H(2)O(2)). The rate constants of reactions of NDMA with ozone and hydroxyl radical ((*)OH) were determined to be 0.052+/-0.0016M(-1)s(-1) and (4.5+/-0.21)x10(8)M(-1)s(-1), respectively. The experiments performed with buffered deionized water varying solution pH and employing H(2)O(2) and HCO(3)(-) clearly showed that the reaction with (*)OH dominates the NDMA oxidation during ozonation. Conventional ozonation with up to 160 microM (=7.7 mgL(-1)) ozone led to less than 25% NDMA oxidation in natural waters. The AOP O(3)/H(2)O(2) required 160-320 microM ozone ([O(3)](0)/[H(2)O(2)](0)=2:1) to achieve 50-75% NDMA oxidation. However, multiple injections of ozone of the same overall dose somewhat improved the oxidant utilization efficiency by minimizing (*)OH scavenging contribution of oxidants. Methylamine (MA) was found to be a major amino product from NDMA oxidation initiated by (*)OH. The mechanism of NDMA oxidation to MA is discussed based on the results obtained in this study and the previous literature. Bromate formation may be the limiting factor for NDMA oxidation during ozonation and ozone-based AOPs in bromide-containing waters.  相似文献   

3.
A batch reactor was used to evaluate the efficiency of advanced oxidation process of the organic pollutants in biologically treated wastewater effluents with UV/H2O2. A 450-W high-pressure mercury vapor lamp was used as the light source. During the degradation process, the concentration of the dissolved organic compounds could be increased by more than twofold due to the decomposition of microorganisms. This increase of the dissolved organic compounds was eliminated if the water was filtered before the photodegradation experiments. It is observed that the UV alone could play a role for the oxidation of the organic pollutants; however, the addition of a small amount of hydrogen peroxide promotes the degradation efficiency of organic compounds in wastewater. The best oxidation efficiency was obtained when the water samples were under acidic conditions (pH 5), and the rate of degradation was not enhanced with the increasing H2O2 dosages. The optimum H2O2 dose was between 0.01% and 0.1% for the oxidation processes in this study. The presence of the carbonate/bicarbonate ions in water inhibits the degradation of the organic compounds.  相似文献   

4.
This study evaluated a pilot-scale nonthermal plasma (NTP) advanced oxidation process (AOP) for the degradation of trace organic compounds such as pharmaceuticals and potential endocrine disrupting compounds (EDCs). The degradation of seven indicator compounds was monitored in tertiary-treated wastewater and spiked surface water to evaluate the effects of differing water qualities on process efficiency. The tests were also conducted in batch and single-pass modes to examine contaminant degradation rates and the remediation capabilities of the technology, respectively. Values for electrical energy per order (EEO) of magnitude degradation ranged from <0.3 kWh/m3-log for easily degraded compounds (e.g., carbamazepine) in surface water to 14 kWh/m3-log for more recalcitrant compounds (e.g., meprobamate) in wastewater. Changes in the bulk organic matter based on UV254 absorbance and excitation-emission matrices (EEM) were also monitored and correlated to contaminant degradation. These results indicate that NTP may be a viable alternative to more common AOPs due to its comparable energy requirements for contaminant degradation and its ability to operate without any additional feed chemicals.  相似文献   

5.
Zhu W  Yang Z  Wang L 《Water research》2001,35(8):2087-2091
A pretreatment method for the biological treatment of wastewater from 4,4'-diaminostilbene-2,2'-disulfonic acid (DSD-acid) manufacturing processes, a refractory dye intermediate wastewater, based on combined ferrous hydrogen peroxide oxidation and coagulation-flocculation, was developed. When the wastewater was treated with ferrous hydrogen peroxide oxidation ([Fe2+] = 2.7 mmol/L, [H2O2] = 0.21 mol/L) after a flocculation using an organic flocculant TS-1 at a dosage of 3 g/L, the overall COD and color removals were 64 and 62%, respectively. BOD5/COD value of the effluent was 0.3. Ferrous hydrogen peroxide oxidation treatment can reduce the solubility of organic molecules with sulfonic group and increase the efficiency of coagulation treatment. The COD and color removals were both more than 90% when FeCl3 was used as the coagulation (dosages of two-step coagulation were 0.031 and 0.012 mol/L respectively) after a ferrous hydrogen peroxide oxidation pretreatment at a H2O2 dosage of 0.06 mol/L.  相似文献   

6.
An ozone and ozone/peroxide oxidation process was evaluated at pilot scale for trace organic contaminant (TOrC) mitigation and NDMA formation in both drinking water and water reuse applications. A reverse osmosis (RO) pilot was also evaluated as part of the water reuse treatment train. Ozone/peroxide showed lower electrical energy per order of removal (EEO) values for TOrCs in surface water treatment, but the addition of hydrogen peroxide increased EEO values during wastewater treatment. TOrC oxidation was correlated to changes in UV254 absorbance and fluorescence offering a surrogate model for predicting contaminant removal. A decrease in N-nitrosodimethylamine (NDMA) formation potential (after chloramination) was observed after treatment with ozone and ozone/peroxide. However, during spiking experiments with surface water, ozone/peroxide achieved limited destruction of NDMA, while in wastewaters net direct formation of NDMA of 6-33 ng/L was observed after either ozone or ozone/peroxide treatment. Once formed during ozonation, NDMA passed through the subsequent RO membranes, which highlights the significance of the potential for direct NDMA formation during oxidation in reuse applications.  相似文献   

7.
Optimization of coagulation and ozonation processes for removal of disinfection by–products (DBP) formation potential in raw water was conducted by a pilot scale system. Proper poly–aluminum–chloride–sulfates (PACS), pre–ozone and post–ozone dosages are required for improving the removal performance of DBP formation potential to guarantee the safety of drinking water. Considering the treatment performances and economic costs, the optimum PACS, pre–ozone and post–ozone dosages for treating raw water with high organic concentration should be around 8.9 mg/L Al2O3, 0.5 and 2.5 mg/L, respectively. The combined drinking water treatment system of pre–ozonation, coagulation/sedimentation, sand filtration, post–ozonation, granular activated carbon filtration and disinfection is a promising process to reduce DBP formation potential from raw water in southern China. Under the optimum conditions, this combined system removed total trihalomethanes and haloacetic acids formation potential 50.16 and 69.10%, respectively.  相似文献   

8.
Sharpless CM  Page MA  Linden KG 《Water research》2003,37(19):4730-4736
One concern with UV disinfection of water is the production of nitrite when polychromatic UV sources are utilized. Based on previous work, it was hypothesized that a small addition of hydrogen peroxide (H(2)O(2)) may be useful in controlling nitrite during UV disinfection. However, it was found that H(2)O(2) addition (5 or 10mg/L) during polychromatic UV irradiation of drinking water at doses used for disinfection significantly increases the levels of nitrite produced relative to solutions without H(2)O(2). Enhancement rates ranged from approximately 15% to 40% depending upon pH and H(2)O(2) concentration; the relative increase in the NO(2)(-) yield was greater at pH 6.5 than at pH 8.3. The observed effects are tentatively ascribed to a combination of enhanced superoxide production and increased hydroxyl radical scavenging when H(2)O(2) is added. These results indicate that H(2)O(2) cannot be used to control nitrite production during UV disinfection and that enhanced nitrite formation will occur if H(2)O(2) is added during UV water treatment to achieve advanced oxidation of contaminants.  相似文献   

9.
Oxidation of raw water with chlorine results in formation of trihalomethanes (THM) and haloacetic acids (HAA). Factors affecting their concentrations have been found to be organic matter type and concentration, pH, temperature, chlorine dose, contact time and bromide concentration, but the mechanisms of their formation are still under investigation. Within this scope, chlorination experiments have been conducted with water reservoirs from Terkos, Buyukcekmece and Omerli lakes, Istanbul, with different water quality regarding bromide concentration and organic matter content. The factors studied were pH, contact time, chlorine dose, and specific ultraviolet absorbance (SUVA). The determination of disinfection by-products (DBP) was carried out by gas chromatography techniques. Statistical analysis of the results was focused on the development of multiple regression models for predicting the concentrations of total THM and total HAA based on the use of pH, contact time, chlorine dose, and SUVA. The developed models provided satisfactory estimations of the concentrations of the DBP and the model regression coefficients of THM and HAA are 0.88 and 0.61, respectively. Further, the Durbin-Watson values confirm the reliability of the two models. The results indicate that under these experimental conditions which indicate the variations of pH, chlorine dosages, contact time, and SUVA values, the formation of THM and HAA in water can be described by the multiple linear regression technique.  相似文献   

10.
Duirk SE  Valentine RL 《Water research》2006,40(14):2667-2674
A kinetic model was developed to predict dichloroacetic acid (DCAA) formation in chloraminated systems. Equations describing DCAA formation were incorporated into an established comprehensive monochloramine-natural organic matter (NOM) reaction model. DCAA formation was theorized to be proportional to the amount of NOM oxidized by monochloramine and described by a single dimensionless DCAA formation coefficient, theta(DCAA) (M(DCAA)/M(DOC(ox)). The applicability of the model to describe DCAA formation in the presence of six different NOM sources was evaluated. DCAA formation could be described by considering a single NOM source-specific value for theta(DCAA) over a wide range of experimental conditions (i.e., pH, NOM, free ammonia, and monochloramine concentrations). DCAA formation appears to be directly proportional to the amount of active chlorine (monochloramine and free chlorine) that reacted with the NOM under these experimental conditions. Values of theta(DCAA) for all six NOM sources, determined by nonlinear regression analysis, varied from 6.51 x 10(-3) to 1.15 x 10(-2) and were linearly correlated with specific ultraviolet absorbance at 280 nm (SUVA(280)). The ability to model monochloramine loss and DCAA formation in the presence of NOM provides insight into disinfection by-product (DBP) formation pathways under chloramination conditions. The subsequent model and correlations to SUVA has the potential to aid the water treatment industry as a tool in developing strategies that minimize DBP formation while maintaining the microbial integrity of the water distribution system.  相似文献   

11.
T. Bond  F. Roddick 《Water research》2009,43(10):2615-4354
Formation of disinfection by-products (DBPs) can be controlled by removal of disinfection by-product precursors before disinfection. Variable success has been reported, depending on the treatment used and water tested. Chemical and biological oxidations are candidate technologies to control DBP formation. Given the uncertainty over the identity of DBP precursors, the use of surrogates of natural organic matter (NOM) allows fundamental probing of the links between compound character, removal and DBP formation. Nine compounds were chosen to represent NOM and their removal by two advanced oxidation processes (AOPs), UV-C irradiation and biological treatment compared while haloacetic acid (HAA) formation before and after treatment was measured. Although AOPs were able to fully remove all compounds, incomplete mineralisation led to increased HAA levels, dramatically in the case of two amino acids. Biological treatment was effective in removing amino acids but also moderately increased the HAA formation potential (HAAFP) of hydrophilic compounds. These findings indicate waters with high amino acid concentrations will be susceptible to raised HAA levels following AOP treatment and careful process selection for HAA control is required in such cases.  相似文献   

12.
Zelmanov G  Semiat R 《Water research》2008,42(14):3848-3856
The influence of inorganic ions (HCO(3), PO(4)/HPO(4)/H(2)PO(4), Cl, SO(4), Ca, Na and Mg) on the advanced chemical oxidation process of organic compounds dissolved in water is reported here. The catalytic behavior of iron(3)-oxide-based nano-particles was investigated together with inorganic ions and hydrogen peroxide concentrations, and pH level. Phenol was chosen as a typical organic contaminant for this study as a simulating pollutant. The limiting concentrations of radical scavengers making the oxidation process inefficient were identified. The strong effect of concentration of radical scavengers HCO(3), PO(4)/HPO(4)/H(2)PO(4), the nano-catalyst and hydrogen peroxide concentrations, and pH on the phenol oxidation rate and lag time period before reaction starts was determined. It was shown that Cl, SO(4), Ca, Na and Mg ions had no significant effect on the kinetics of phenol oxidation.  相似文献   

13.
R Hao  H Ren  J Li  Z Ma  H Wan  X Zheng  S Cheng 《Water research》2012,46(17):5765-5776
This study was undertaken to demonstrate the feasibility of using three-dimensional excitation-emission matrix (3DEEM) fluorescence spectroscopy for the determination of chlorination disinfection by-product (DBP) precursors and the disinfection by-product formation potential (DBPFP) of reclaimed water samples. Two major DBP precursors were examined in this study, including humic acid (HA) and fulvic acid (FA). The 3DEEM fluorescence results obtained from various reclaimed water samples indicated that the reclaimed water samples were rich in fulvic acid-like substances that were associated with two main peaks (Ex/Em = 235-245/420-440 nm, and Ex/Em = 330-340/410-430 nm) in the fluorescence spectrum. The results also illustrated that the wavelength location of peak fluorescence intensity of a reclaimed water sample was independent of the influent water quality and the wastewater treatment process used in the reclamation plant. As a result, the peak fluorescence intensity and the wavelength location of the peak were used to identify the species of DBP precursors and their concentrations in the reclaimed water sample. Four regression models were then developed to relate the peak fluorescence intensity of the water sample to its DBPFP, including the formation potential of trihalomethane (THMFP) and the formation potential of haloacetic acid (HAAFP). The regression models were verified using the measured DBPFP results of a series of reclaimed water samples. It was found that the regression modeling results matched the measured DBPFP values well, with prediction errors below 10%. Therefore, the use of 3DEEM fluorescence spectroscopy together with the developed regression models in this study can provide a reliable and rapid tool for monitoring the quality of reclaimed water. Using this method, water quality could be monitored online, without utilizing the lengthy conventional DBPFP measurement.  相似文献   

14.
Ultraviolet (UV) irradiation has become popular as a primary disinfectant because it is very effective against Cryptosporidium and does not directly form regulated disinfection by-products. Higher UV doses and UV advanced oxidation (UV/H2O2) processes are under consideration for the treatment of trace organic pollutants (e.g. pharmaceuticals, personal care products). Despite the disinfection effectiveness of UV light, a secondary disinfectant capable of maintaining a distribution system residual is required to meet current U.S. regulation. This study investigated changes in disinfection by-product (DBP) formation attributed to UV or UV/H2O2 followed by application of free chlorine to quench hydrogen peroxide and provide residual disinfectant. At a UV dose of 1000 mJ/cm2, trihalomethane (THM) yield increased by up to 4 μg/mg-C and 13 μg/mg-C when treated with low and medium pressure UV, respectively. With the addition of hydrogen peroxide, THM yield increased by up to 25 μg/mg-C (5 mg-H2O2/L) and 37 μg/mg-C (10 mg-H2O2/L). Although no changes in DBPs are expected during UV disinfection, application of UV advanced oxidation followed by chlorine addition was assessed with regard to impacts on DBP formation.  相似文献   

15.
The photocatalytic organic content reduction of a selected synthetic municipal wastewater by the use of heterogeneous and homogeneous photocatalytic methods under solar irradiation has been studied at a pilot-plant scale at the Plataforma Solar de Almeria. In the case of heterogeneous photocatalysis the effect of catalysts and oxidants concentration on the decomposition degree of the wastewater was examined. By an accumulation energy of 50 kJL(-1) the synergetic effect of 0.2 gL(-1)TiO(2) P-25 with hydrogen peroxide (H(2)O(2)) and Na(2)S(2)O(8) leads to a 55% and 73% reduction of the initial organic carbon content, respectively. The photo-fenton process appears to be more efficient for this type of wastewater in comparison to the TiO(2)/oxidant system. An accumulation energy of 20 kJL(-1) leads to 80% reduction of the organic content. The presence of oxalate in the Fe(3+)/H(2)O(2) system leads to an additional improvement of the photocatalytic efficiency.  相似文献   

16.
二级氧化工艺预处理对硝基苯甲酸废水的研究   总被引:1,自引:0,他引:1  
以对硝基苯甲酸废水为处理对象,分别考察了O3/GAC、ClO2/GAC工艺以及二者的组合工艺对有机物的去除效率和改善废水可生化性的效果。结果表明,O3/GAC工艺的最佳O3投量为400mg/L,ClO2/GAC工艺的最佳ClO2投量为300mg/L;单级氧化工艺处理出水的有机物浓度仍较高,不能满足后续生化处理对进水水质的要求;O3/CAC-ClO2/GAC组合工艺的处理效果优于ClO2/GAC-O3/GAC组合工艺,其对COD的去除率可达75%左右,并使BOD5/COD值由原水的0.10升高到0.46,提高了废水的可生化性,减轻了后续生化处理的负荷,是对硝基苯甲酸废水的有效预处理方法。  相似文献   

17.
Shah AD  Kim JH  Huang CH 《Water research》2011,45(18):6087-6096
Through various anthropogenic inputs, tertiary amines can readily contaminate wastewater and drinking water sources and can form chlorammonium species (R3N+-Cl) during aqueous chlorine disinfection. This study investigated the less understood concept that these chlorammonium species can potentially enhance organic contaminant loss and increase disinfection byproduct formation to a greater extent than aqueous chlorine. Tertiary amines’ effectiveness was highly dependent on amine structure as trimethylamine (TMA) and 4-morpholineethanesulfonic acid (MES) enhanced organic contaminant loss, while others (nitrilotriacetic acid (NTA) and creatinine (CRE)) were ineffective. MES addition up to 25 μM led to increased organic contaminant chlorination by up to three orders of magnitude while observing pseudo-first order kinetic behavior and a linear amine dose response. TMA addition up to 0.5 μM accelerated organic contaminant chlorination by almost two orders of magnitude, but occasionally deviated from pseudo-first order kinetics with incomplete organic contaminant degradation and a non-linear amine dose response - a result linked to TMA’s rapid auto-decomposition over time. Byproduct formation was identical with and without amine addition, and thus the chlorination mechanisms are likely similar to aqueous chlorine. Results from this study improve the mechanistic understanding behind tertiary amine-enhanced chlorination.  相似文献   

18.
Advanced oxidation with ultraviolet light and hydrogen peroxide (UV/H2O2) produces hydroxyl radicals that have the potential to degrade a wide-range of organic micro-pollutants in water. Yet, when this technology is used to reduce target contaminants, natural organic matter can be altered. This study evaluated disinfection by-product (DBP) precursor formation for UV/H2O2 while reducing trace organic contaminants in natural water (>90% for target pharmaceuticals, pesticides and taste and odor producing compounds and 80% atrazine degradation). A year-long UV/H2O2 pilot study was conducted to evaluate DBP precursor formation with varying water quality. The UV pilot reactors were operated to consistently achieve 80% atrazine degradation, allowing comparison of low pressure (LP) and medium pressure (MP) lamp technologies for DBP precursor formation. Two process waters of differing quality were used as pilot influent, i.e., before and after granular activated carbon adsorption. DBP precursors increased under most of the conditions studied. Regulated trihalomethane formation potential increased through the UV/H2O2 reactors from 20 to 118%, depending on temperature and water quality. When Post-GAC water served as reactor influent, less DBPs were produced in comparison to conventionally treated water. Haloacetic acid (HAA5) increased when conventionally treated water served as UV/H2O2 pilot influent, but only increased slightly (MP lamp) when GAC treated water served as pilot influent. No difference in 3-day simulated distribution system DBP concentration was observed between LP and MP UV reactors when 80% atrazine degradation was targeted.  相似文献   

19.
An investigation was made of the treatability of methyl tert-butyl ether (MTBE) in five groundwaters with highly varied water quality characteristics. Air stripping, granular activated carbon (GAC) adsorption, and the O(3)/H(2)O(2) and UV/H(2)O(2) advanced oxidation processes were compared in a mobile water treatment pilot plant under a variety of process conditions. Air stripping was shown to have the lower unit treatment costs for higher flowrates (i.e., 3800L/min), although relatively tall towers were required for greater treatment requirements. At low flowrates (i.e., 38L/min), advanced oxidation provided the lowest treatment costs for four of five waters (but was ineffective for a high chemical oxygen demand water). Both the O(3)/H(2)O(2) and UV/H(2)O(2) processes were more efficient at pH 7 versus 9 due in part to increased scavenging at higher pH. GAC was examined using rapid small-scale column tests (RSSCT). GAC was effective at most conditions, although it was also the most costly alternative for most waters. The results of this study can help to provide specific guidance into process selection for treating MTBE in contaminated groundwaters.  相似文献   

20.
Jingyun Fang  Jun Ma  Xin Yang 《Water research》2010,44(6):1934-1940
Formation of carbonaceous disinfection by-products (C-DBPs), including trihalomethanes (THMs), haloacetic acids (HAAs), haloketones (HKs), chloral hydrate (CH), and nitrogenous disinfection by-products (N-DBPs), including haloacetonitriles (HANs) and trichloronitromethane (TCNM) from chlorination of Microcystis aeruginosa, a blue-green algae, under different conditions was investigated. Factors evaluated include contact time, chlorine dosages, pH, temperature, ammonia concentrations and algae growth stages. Increased reaction time, chlorine dosage and temperature improved the formation of the relatively stable C-DBPs (e.g., THM, HAA, and CH) and TCNM. Formation of dichloroacetonitrile (DCAN) followed an increasing and then decreasing pattern with prolonged reaction time and increased chlorine dosages. pH affected DBP formation differently, with THM increasing, HKs decreasing, and other DBPs having maximum concentrations at certain pH values. The addition of ammonia significantly reduced the formation of most DBPs, but TCNM formation was not affected and 1,1-dichloropropanone (1,1-DCP) formation was higher with the addition of ammonia. Most DBPs increased as the growth period of algal cells increased. Chlorination of algal cells of higher organic nitrogen content generated higher concentrations of N-DBPs (e.g., HANs and TCNM) and CH, comparable DCAA concentration but much lower concentrations of other C-DBPs (e.g., THM, TCAA and HKs) than did natural organic matter (NOM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号