首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The pool boiling characteristics of nanofluids is affected by the relative magnitudes of the average surface roughness and the average particle diameter. In the present work, an attempt has been made to study the interactions between the nanoparticles and the heater surface. The experimental methodology accounts for the transient nature of the boiling phenomena. The boiling curves of electro-stabilized Al2O3 water-based nanofluids at different concentrations on smooth and rough heaters and the burn-out heat flux have been obtained experimentally. Extensive surface profile characterization has been done using non-intrusive optical measurements and atomic force microscopy. A measure of the surface wettability has been obtained by determining the advancing contact angle. These results give an insight into the relative magnitudes of dominance of the prevalent mechanisms under different experimental conditions. Boiling on nanoparticle coated heaters has been investigated and presented as an effective solution to counter the disadvantageous transient boiling behavior of nanofluids.  相似文献   

2.
This paper described the effects of a magnetite-water nanofluid (MWNF) on the critical heat flux (CHF) enhancement using an Ni–Cr wire in pool boiling. All experiments were performed at a saturated condition under atmospheric pressure. The CHF values between the MWNF and the other nanofluids with several volume concentrations were compared to evaluate the effect of the MWNF on the CHF enhancement. The CHF values of the MWNF were enhanced from approximately 170% to 240% of pure water as the nanoparticle concentration increased. In addition, the CHF for the MWNF showed the highest value among the evaluated nanofluids. In this paper, three methods were introduced to elucidate the mechanism underlying CHF enhancement. First, scanning electron microscope (SEM) images were obtained to explain the CHF enhancement mechanism due to the deposited nanoparticles, which is related to the surface wettability of the heating surface during the pool boiling. Second, bubble formation in pool boiling was analyzed using image processing to demonstrate the relationship between bubble dynamics and CHF enhancement. Finally, the magnetic field was analytically calculated using the Biot–Savart law to evaluate the effects of the magnetic field on the CHF.  相似文献   

3.
Boiling heat transfer performance of nanofluid has been studied during the past few years. Some controversial results are reported in literature about the potential impact of nanofluids on heat transfer intensification. Whereas the mixtures of ethylene glycol and water are considered the most common water-based antifreeze solutions used in automotive cooling systems, the present study is an experimental investigation of boiling heat transfer of CuO/ethylene glycol–water (60/40) nanofluids. The results indicate that a considerable boiling heat transfer enhancement has been achieved by nanofluid and the enhancement increases with nanoparticles concentration and reaches 55% at a nanoparticles loading of 0.5%.  相似文献   

4.
Using TiO2–water nanofluids as the test liquid, pool boiling experiments were carried out to investigate the dependence of the nucleate boiling heat transfer, surface wettability and critical heat flux (CHF) on the boiling time in nanofluids. In the experiments performed at sufficiently high nanoparticle concentrations, the boiling heat transfer first degraded, then improved, and finally reached an equilibrium state. It was hence supposed that the present nanofluids had competing effects to deteriorate and enhance the nucleate boiling heat transfer. As for the surface wettability and CHF, the static contact angle asymptotically decreased whilst the CHF asymptotically increased with an increase in the boiling time. The maximum CHF enhancement measured in the present experiments was 91%, and strong correlation was found between the contact angle and the CHF. Although the boiling time needed to achieve the maximum CHF enhancement was less than a minute at high particle concentrations, a longer time of the order of 1 h was necessary at the lowest particle concentration tested in this work. This experimental result indicated that sufficient attention should be paid to the boiling time effect particularly in industrial applications of nanofluids to emergency cooling.  相似文献   

5.
Comparison of boiling performance of nanofluids and mixtures of nanofluids with surfactant is an objective of this research. Experimental investigation has been performed with different heat flux and concentrations of nanoparticles and surfactant. CuO and ZnO water-based nanofluids are used and sodium dodecyl sulfate (SDS) is used as surfactant. The size of nanoparticles is measured from Field Emission Scanning Electron Microscopy pictures. Roughness of rod heater is calculated by using Atomic Force Microscopy picture. The pure water is tested after each run with nanofluid and mixture of nanofluid with SDS and the results are presented. Result from experiments demonstrates that the addition of SDS to nanofluids solution resulted in improving boiling performance. Experimental results also show an inefficient process by excluding surfactant. An optimum value for heat transfer coefficient is found by increasing of surfactant concentration within CuO nanofluid (0.01wt%CuO). Pictures of coated and clean surface in boiling pure water are employed for understanding the dynamics of bubbles. Gorenflo constant (h0) is utilized to show the effect of addition of nanoparticles and SDS in boiling performance of base fluid.  相似文献   

6.
分别在光滑及波形结构的铜表面上对水和乙醇进行饱和池沸腾实验,观测了临界热流密度(CHF)下临界波长的变化趋势,并分析了表面结构对沸腾传热系数及CHF的影响。实验验证了光滑表面上,临界波长随工质的不同而变化,继而影响CHF,其实验值与经典的临界波长及临界热流密度理论一致。而粗糙表面上的乙醇沸腾实验进一步发现,波形结构可以减小临界波长,从而有效提高CHF,其影响规律与相关文献的理论模型较为符合。  相似文献   

7.
Boiling is one of the most important processes in almost every industrial heat exchanger arrangement. The present study examines the role played by nanofluids in increasing the heat transfer rate which could improve process efficiency as well as operational cost. The setup consists of a stainless steel vertical cylinder pressure vessel having a horizontal heating rod made of stainless steel submerged in a pool of working fluid (distilled water, alumina/water nanofluid of variable concentration). Simulations were carried out using a 2D geometrical domain in order to calculate values of heat transfer coefficient for different constant heat flux applied on the heater at atmospheric as well as sub atmospheric pressures. For the simulations, a transient Eulerian multiphase involving boiling model was used along with various sub-models involving drag, lift, heat and mass transfer models. The simulated results for the value of heat transfer coefficient were compared and validated from the experimental results.  相似文献   

8.
The pool boiling characteristics of dilute dispersions of alumina, zirconia and silica nanoparticles in water were studied. Consistently with other nanofluid studies, it was found that a significant enhancement in critical heat flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). Buildup of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly improves the surface wettability, as shown by a reduction of the static contact angle on the nanofluid-boiled surfaces compared with the pure-water-boiled surfaces. A review of the prevalent CHF theories has established the nexus between CHF enhancement and surface wettability changes caused by nanoparticle deposition. This represents a first important step towards identification of a plausible mechanism for boiling CHF enhancement in nanofluids.  相似文献   

9.
The pool boiling characteristics of dilute dispersions of alumina nanoparticles in water were studied. Consistent with other nanofluid studies, it was found that a significant enhancement in critical heat flux (CHF) can be achieved at modest nanoparticle concentrations (<0.1% by volume). During experimentation and subsequent inspection, formation of a porous layer of nanoparticles on the heater surface occurred during nucleate boiling. This layer significantly changes surface texture of the heater wire surface which could be the reason for improvement in the CHF value. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20301  相似文献   

10.
Using a numerical model, the effect of heating methods on saturated nucleate pool boiling is investigated parametrically for smooth and rough nickel and copper heater plates. The boiling curve moved right with decreasing thickness for the smooth and rough nickel and copper heaters in the constant-heat-flux heating method. This trend was reversed in the constant-temperature heating method; the boiling curved shifted left with decreasing heater thickness. However, the later trend was not affected by the heater material and thickness and the surface roughness (mean cavity radius). The boiling curves were identical for the constant internal generation rate and the constant-heat-flux heating method. The use of ac instead of dc resistive heating caused the boiling curve generally to move left. This behavior was not linear with the heat flux, heater material, or surface conditions. No hysterisis was found when the heat flux was increased and then decreased gradually to original values.  相似文献   

11.
Sand spots, attached to a copper ball surface by means of polyvinyl acetate adhesive and distributed over the surface with areal density that ranges between one spot per 1.18 cm2 (for low‐density spots) and one spot per 0.51 cm2 (for high‐density spots), serve as a temporary heat transfer enhancer during the quenching in liquid nitrogen. Highest heat flux densities, achieved during quenching, lie in the range 10.8 to 20.2 W/cm2, depending on the sand layer structure. Application of the temporary enhancer increases an amount of heat, evacuated by highly effective nucleate and transition boiling, by factor of 4.5 as compared with the bare sample. The process of sand layer preparation, data acquisition peculiarities, relationship between heat exchange efficiency and the spots areal density, along with sand grit size are discussed in this paper.  相似文献   

12.
This work investigated the dynamics of bubbles in pool boiling of nanofluid with coated and sodium dodecyl sulfate (SDS) solution with different nanoparticles. Also, computational fluid dynamics (CFD) module was used for mathematical modeling of bubbles in pure water boiling.Different macroscale parameters such as: shapes, numbers and contact angle of bubbles also were investigated experimentally and verified by CFD modeling results. Porous layers of nanoparticles on stainless steel substrate in conjunction with SDS additions were shown to modify formation of bubbles in comparison to reference condition. Improvement in surface hydrophilic conditions and boiling performance was observed by Multi-wall Carbon Nanotube (MWCNT) porous layers, in spite of coated surface by CuO and Al2O3 (γ) water based nanofluid. Growth time of bubbles also changes by the presence of porous layers and surfactant solution which resulted from change in surface tension force. Number of bubbles increased by MWCNT and SDS solution and decreased by CuO and Al2O3 nanofluid boiling. Results showed the comprehensive change in bubble dynamics and surface wettability by porous layer of nanoparticles and SDS solution.  相似文献   

13.
The pool nucleate boiling heat transfer experiments of water (H2O) based and alcohol (C2H5OH) based nanofluids and nanoparticles-suspensions on the plain heated copper surface were carried out. The study was focused on the sorption and agglutination phenomenon of nanofluids on a heated surface. The nanofluids consisted of the base liquid, the nanoparticles and the surfactant. The nanoparticles-suspensions consisted of the base liquid and nanoparticles. The both liquids of water and alcohol and both nanoparticles of CuO and SiO2 were used. The surfactant was sodium dodecyl benzene sulphate (SDBS). The experimental results show that for nanofluids, the agglutination phenomenon occurred on the heated surface when the wall temperature was over 112 °C and steady nucleated boiling experiment could not be carried out. The reason was that an unsteady porous agglutination layer was formed on the heated surface. However, for nanoparticles-suspensions, no agglutination phenomenon occurred on the heating surface and the steady boiling could be carried out in the whole nucleate boiling region. For the both of alcohol based nanofluids and nano-suspensions, no agglutination phenomenon occurred on the heating surface and steady nucleate boiling experiment could be carried out in the whole nucleate boiling region whose wall temperature did not exceed 112 °C. The boiling heat transfer characteristics of the nanofluids and nanoparticles-suspensions are somewhat poor compared with that of the base fluids, since the decrease of the active nucleate cavities on the heating surface with a very thin nanoparticles sorption layer. The very thin nanoparticles sorption layer also caused a decrease in the solid–liquid contact angle on the heating surface which leaded to an increase of the critical heat flux (CHF).  相似文献   

14.
The copper nanoparticles of average size of 10 nm have been prepared by the sputtering method and characterized through atomic force microscopy (AFM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The pool boiling heat transfer characteristics of 0.25%, 0.5% and 1.0% by weight concentrations of copper nanoparticles has been studied. Different copper based nanofluids were prepared in both, distilled water and distilled water with 9.0 wt% of sodium lauryl sulphate anionic surfactant (SDS). The pool boiling heat transfer data were acquired for the boiling of nanofluids over a 30 mm square and 0.44 mm thick stainless steel plate heater. The experimental results show that for the critical heat flux of pure water is 80% higher than that of water–surfactant fluid. Also, it was found that the critical heat flux for 0.25%, 0.5% and 1.0% concentrations of copper nanoparticles in copper–water nanofluids are 25%, 40% and 48% higher than that of pure water. But in the case of copper–water with surfactant nanofluids comparing with pure water, the CHF decreases to 75%, 68%, and 62% for respective concentrations of copper nanoparticles. The heat transfer coefficient decreases with increase of nanoparticles concentration in both water–copper and water–copper with surfactant nanofluids.  相似文献   

15.
The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are investigated to determine the important parameters' effects on the heat transfer coefficient and also to have reliable empirical correlations based on the neural network analysis. Nanofluids with various concentrations of 0.0001, 0.0005, 0.005, and 0.01 vol.% are employed. The horizontal circular test plate, made from copper with different roughness values of 0.2, 2.5 and 4 μm, is used as a heating surface. The artificial neural network (ANN) training sets have the experimental data of nucleate pool boiling tests, including temperature differences between the temperatures of the average heater surface and the liquid saturation from 5.8 to 25.21 K, heat fluxes from 28.14 to 948.03 kW m− 2. The pool boiling heat transfer coefficient is calculated using the measured results such as current, voltage, and temperatures from the experiments. Input of the ANNs are the 8 numbers of dimensional and dimensionless values of the test section, such as thermal conductivity, particle size, physical properties of the fluid, surface roughness, concentration rate of nanoparticles and wall superheating, while the outputs of the ANNs are the heat flux and experimental pool boiling heat transfer coefficient from the analysis. The nucleate pool boiling heat transfer characteristics of TiO2 nanofluids are modeled to decide the best approach, using several ANN methods such as multi-layer perceptron (MLP), generalized regression neural network (GRNN) and radial basis networks (RBF). Elimination process of the ANN methods is performed together with the copper and aluminum test sections by means of a 4-fold cross validation algorithm. The ANNs performances are measured by mean relative error criteria with the use of unknown test sets. The performance of the method of MLP with 10-20-1 architecture, GRNN with the spread coefficient 0.7 and RBFs with the spread coefficient of 1000 and a hidden layer neuron number of 80 are found to be in good agreement, predicting the experimental pool boiling heat transfer coefficient with deviations within the range of ± 5% for all tested conditions. Dependency of output of the ANNs from input values is investigated and new ANN based heat transfer coefficient correlations are developed, taking into account the input parameters of ANNs in the paper.  相似文献   

16.
In recent times, nanofluids have been investigated comprehensively by the scientists because of the progresses in nanotechnology. Nanofluids' physical properties are necessary to be known accurately in order to reduce the error rate of models. Estimation of viscosity value of nanofluids is a significant one owing to its extensive usage in thermal engineering. In this work, carbon nanotube (CNT) particles are chosen to prepare nanofluid blend with its pure water and antifreeze. Their volumetric concentrations are varied from 0 to 2%in both pure water and antifreeze having various proportions with pure water. As soon as nanofluid having some surfactants becomes stabilized by means a sonicator and ultrasonic bath, viscosity meter is used to determine the viscosity regarding with the temperatures ranging from 15 °C to 50 °C·Consequently, the measured viscosity values decreases with nanofluid's temperature and increase with particle concentration as expectedly. In addition, a comparison study with the measured results and almost all empirical correlations in open sources has been done in order to determine the most predictive ones for the studied nanofluids. It was derived from the results that viscosity correlations can estimate different sorts of nanofluids' viscosity even though their base fluids with particles having various diameters are totally different from others.  相似文献   

17.
Nanofluids (NFs), wherein solid nanoparticles (NPs) are dispersed in traditional heat exchange fluids, are recognized for improving the performance of traditional fluids by enhancing their thermal conductivity (TC). The presence of impurities or undesired phases in commercial NPs may influence the thermo-physical properties of NFs including TC and viscosity, which makes it difficult to understand the real effect of NPs on heat transport characteristics of NFs. Moreover, the presence of these impurities in commercial NPs is unavoidable and their removal from commercial NPs with no negative impact on composition of NPs is challenging. To study the impact of impurities on thermo-physical properties of NFs a systematic experimental work was performed using commercial α-SiC and SiO2 NPs as the secondary phase as it commonly co-exists in commercial SiC batches. For this purpose, a series of NFs containing 9 wt% of α-SiC/SiO2 NP mixture with different content of SiO2 NPs from 5 to 50% were fabricated and investigated. The results show that as the undesired impurity phase (SiO2) increases, TC of NFs decreases slightly while viscosity increases dramatically. This may be a sound path to tuning the viscosity of the NFs while the achieved high TC is mildly influenced by the secondary phase.  相似文献   

18.
Nanofluids are colloidal dispersions of nanoparticles in homogenous base fluids. Previous studies have shown that nanofluids can increase pool boiling critical heat flux (CHF) by forming a porous deposition on the heated surface. However, questions remain whether nanoparticles can further enhance the CHF on a passively engineered heat transfer surface, such as a sandblasted metal plate. In this study, three water-based nanofluids (diamond, zinc oxide and alumina) were used to modify sandblasted stainless steel 316 plate heaters via boiling induced deposition. The pool boiling CHF of these pre-coated heaters increased by up to 35% with respect to that of the bare, sandblasted heaters. The enhancements are highest for alumina and zinc oxide nanofluids. Detailed surface characterization of these pre-coated heaters showed different surface morphology depending on the type of nanofluids used. Additionally, the deposited nanoparticles layers were found to alter the wettability of the heaters. Contact angle measurement provided quantitative data to determine possible CHF enhancement based on existing correlations.  相似文献   

19.
20.
以去离子水为基液,以氧化石墨烯纳米粒子为添加剂,制备成水基氧化石墨烯纳米流体,研究纳米流体在不同浓度、温度以及不同纳米粒子粒径下的表面张力,表面张力采用吊环法进行测量。实验结果表明,纳米流体的表面张力随着浓度增大而增大,但相对于去离子水,最大浓度(0.1wt%)的纳米流体表面张力仅增加了2.9%;纳米流体的表面张力随着温度的升高而降低,但降低的幅度小于去离子水随温度的降低幅度;纳米流体的表面张力随着纳米粒子粒径的减小而降低。本文的研究结果可为吸收式制冷循环吸收液的研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号