首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work describes an inverse problem method to optimize the geometric design for microchannel heat sinks using a novel multi-parameter optimization approach, which integrates the simplified conjugate-gradient scheme and a fully developing three-dimensional heat transfer and flow model. Overall thermal resistance is the objective function to be minimized with number of channels, N, channel aspect ratio, α, and the ratio of channel width to pitch, β, as search variables. With a constant bottom area (10 mm × 10 mm), constant heat flux applied to the heat sink bottom surface (100 W cm?2), and constant pumping power (0.05 W), the optimal design values are N = 71, α = 8.24, and β = 0.6, with a minimum overall thermal resistance of 0.144 K W?1. Increasing pumping power reduces overall thermal resistance of the optimal design; however, the design’s effectiveness declines significantly under high pumping power. The N and α values in the optimal design increase and β decreases as pumping power increases.  相似文献   

2.
The paper presents the geometric optimization of the micro-heat sink with straight circular microchannels with inner diameter of Di = 900 μm. The inlet cross-section has a rectangular shape and positioned tangentially to the tube axis with the four different geometries. The fluid flow regime is laminar and water with variable fluid properties is used as a working fluid. The heat flux spread through the bottom sink surface is q = 100 W/cm2. Thermal and hydrodynamic performances of the heat sink are compared with results obtained for conventional channel configuration with lateral inlet/outlet cross-section. Besides, the results are compared with the tangential micro-heat sink with Di = 300 μm. For all the cases, the thermal and hydrodynamic results are compared on a fixed pumping power basis.  相似文献   

3.
Previous studies have investigated the thermal performance of embedding a single piezoelectric fan in a heat sink. Based on this work, a multiple piezoelectric–magnetic fan system (“MPMF”) has been successfully developed that exhibits lower fan power consumption, optimum fan pitch and an optimum fan gap between the fan tips and the heat sink. In this study, the cooling performance and heat convection improvement for the MPMF system embedded in a heat sink are evaluated at different fan tip locations. The results indicate that the fan tip location of the MPMF system at x/Sl = 0.5 and y/Sh = 0 is an optimum configuration, improving the thermal resistance by 53.2% over natural convection condition for the fan input power of 0.1 W. The MPMF system breaks the thermal boundary layer and causes fluctuations inside the fins of the heat sink to enhance the overall heat transfer coefficient. Moreover, the relationship between the convection improvement and the Reynolds number for the MPMF system has been investigated and transformed into a correlation line for nine different fan tip locations to provide a means of predicting the cooling performance for the MPMF system embedded in a heat sink.  相似文献   

4.
A numerical analysis has been carried about to study the heat and mass transfer of forced convection flow with liquid film evaporation in a saturated non-Darcian porous medium. Parametric analyses were conducted concerning the effects of the porosity ε, inlet liquid Reynolds number Rel, inlet air Reynolds number Rea on the heat and mass transfer performance. The results conclude that better heat and mass transfer performances are noticed for the system having a higher Rea, a lower Rel, and a higher ε. Rel plays a more important role on the heat and mass transfer performance than Rea and ε. For the case of ε = 0.4 and Rea = 10,000, the increases of Nu and Sh for Rel = 50 are about by 33.9% and 35.3% relative to the values for Rel = 250.  相似文献   

5.
In this study, effects of cross-cuts on the thermal performance of heat sinks under the parallel flow condition are experimentally studied. To find effects of the length, position, and number of cross-cuts, heat sinks with one or several cross-cuts ranging from 0.5 mm to 10 mm were fabricated. The pressure drop and the thermal resistance of the heat sinks are obtained in the range of 0.01 W<Pp < 1 W. Experimental results show that among the many cross-cut design parameters, the cross-cut length has the most significant influence on the thermal performance of heat sinks. The results also show that heat sinks with a cross-cut are superior to heat sinks containing several cross-cuts in the thermal performance. Based on experimental results, the friction factor and Nusselt number correlations for heat sinks with a cross-cut are suggested. Using the proposed correlations, thermal performances of cross-cut heat sinks are compared to those of optimized plate-fin and square pin-fin heat sinks under the constant pumping power condition. This comparison yields a contour map that suggests an optimum type of heat sink under the constraint of the fixed pumping power and fixed heat sink volume. The contour map shows that an optimized cross-cut heat sink outperforms optimized plate-fin and square pin-fin heat sinks when 0.04 < log L1 < 1.  相似文献   

6.
This study numerically investigates the impinging cooling of porous metallic foam heat sink. The analyzed parameters ranges comprise ε = 0.93/10 PPI Aluminum foam, L/W = 20, Pr = 0.7, H/W = 2–8, and Re = 100–40,000. The simulation results exhibit that when the Re is low (such as Re = 100), the Numax occurs at the stagnation point (i.e. X = 0). However, when the Reynolds number increases, the Numax would move downwards, i.e. the narrowest part between the recirculation zone and the heating surface. Besides, the extent to which the inlet thermal boundary condition influences the prediction accuracy of the Nusselt number increases with a decreasing H/W and forced convective effect. The application ranges of H/W and Re that the effect of the inlet thermal boundary condition can be neglected are proposed. Lastly, comparing our results with those in other studies reveals that the heat transfer performance of the Aluminum foam heat sink is 2–3 times as large as that without it. The thermal resistance is also 30% less than that of the plate fin heat sink for the same volumetric flow rate and the 5.3 mm jet nozzle width. Therefore, the porous Aluminum foam heat sink enhances the heat transfer performance of impinging cooling.  相似文献   

7.
The paper presents the numerical analysis on microchannel laminar heat transfer and fluid flow of nanofluids in order to evaluate the suitable thermal conductivity of the nanoparticles that results in superior thermal performances compared to the base fluid. The diameter ratio of the micro-tube was Di/Do = 0.3/0.5 mm with a tube length L = 100 mm in order to avoid the heat dissipation effect. The heat transfer rate was fixed to Q = 2 W. The water based Al2O3, TiO2 and Cu nanofluids were considered with various volume concentrations ϕ = 1,3 and 5% and two diameters of the particles dp = 13 nm and 36 nm. The analysis is based on a fixed Re and pumping power Π, in terms of average heat transfer coefficient and maximum temperature of the substrate. The results reveal that only the nanofluids with particles having very high thermal conductivity (λCu = 401 W/m K) are justified for using in microcooling systems. Moreover, the analysis is sensitive to both the comparison criteria (Re or Π) and heat transfer parameters (have or tmax).  相似文献   

8.
This work experimentally studied the pressure drop and heat transfer of an in-line diamond-shaped pin-fin array in a rectangular duct by using the transient single-blow technique. The variable parameters are the relative longitudinal pitch (XL = 1.060, 1.414, 1.979) and the relative transverse pitch (XT = 1.060, 1.414, 1.979). The empirical formula for the heat transfer is suggested. Besides, the optimal inter-fin pitches, XT = 1.414 and XL = 1.060, are provided based on the largest heat dissipation under the same pumping power.  相似文献   

9.
The shape optimization of the plate-fin type heat sink with an air deflector is numerically performed to minimize the pressure loss subjected to the desired maximum temperature and geometrical constraints. A function evaluation using the FVM, in general, is required much computational costs in fluid/thermal systems. Thus, global approximate optimization techniques have been introduced into the optimization of fluid/thermal systems. In this study, the Kriging method, which is one of the metamodels, associated with the computational fluid dynamics (CFD) is used to obtain the optimal solutions. The Kriging method can dramatically reduce a computational cost by 1/6 times compared to that of the SQP method so that its efficiency can be validated. The results also show that when the temperature rise is less than 40 K, the optimal design variables are B1 = 2.44 mm, B2 = 2.09 mm, and t = 7.58 mm.  相似文献   

10.
This paper experimentally investigates the sintered porous heat sink for the cooling of the high-powered compact microprocessors for server applications. Heat sink cold plate consisted of rectangular channel with sintered porous copper insert of 40% porosity and 1.44 × 10?11 m2 permeability. Forced convection heat transfer and pressure drop through the porous structure were studied at Re ? 408 with water as the coolant medium. In the study, heat fluxes of up to 2.9 MW/m2 were successfully removed at the source with the coolant pressure drop of 34 kPa across the porous sample while maintaining the heater junction temperature below the permissible limit of 100 ± 5 °C for chipsets. The minimum value of 0.48 °C/W for cold plate thermal resistance (Rcp) was achieved at maximum flow rate of 4.2 cm3/s in the experiment. For the designed heat sink, different components of the cold plate thermal resistance (Rcp) from the thermal footprint of source to the coolant were identified and it was found that contact resistance at the interface of source and cold plate makes up 44% of Rcp and proved to be the main component. Convection resistance from heated channel wall with porous insert to coolant accounts for 37% of the Rcp. With forced convection of water at Re = 408 through porous copper media, maximum values of 20 kW/m2 K for heat transfer coefficient and 126 for Nusselt number were recorded. The measured effective thermal conductivity of the water saturated porous copper was as high as 32 W/m K that supported the superior heat augmentation characteristics of the copper–water based sintered porous heat sink. The present investigation helps to classify the sintered porous heat sink as a potential thermal management device for high-end microprocessors.  相似文献   

11.
This work illustrates the compact heat sink simulations in forced convection flow with side-bypass effect. Conventionally, the numerical study of the fluid flow and heat transfer in finned heat sinks employs the detailed model that spends a lot of computational time. Therefore, some investigators begin to numerically study such problem by using the compact model (i.e. the porous approach) since the regularly arranged fin array can be set as a porous medium. The computations of the porous approach model will be faster than those of the detailed mode due to the assumption of the volume-averaging technique. This work uses the Brinkman–Forchheimer model for fluid flow and two-equation model for heat transfer. A configuration of in-line square pin-fin heat sink situated in a rectangular channel with fixed height (H = 23.7 mm), various width and two equal-spacing bypass passages beside the heat sink is successfully studied. The pin-fin arrays with various porosities (ε = 0.358–0.750) and numbers of pin-fins (n = 25–81), confined within a square spreader whose side length (L) is 67 mm, are employed. The numerical results suggest that, within the range of present studied parameters (0.358 ? ε ? 0.750, 25 ? n ? 81 and 1 ? W/L ? 5), the pin-fin heat sink with ε = 0.750 and n = 25 is the optimal cooling configuration based on the maximum ratio of Nusselt number to dimensionless pumping power (Nu/(ΔP × Re3)). Besides, based on medium Nu/(ΔP × Re3) value and suitable channel size, W/L = 2–3 is suggested as the better size ratio of channel to heat sink.  相似文献   

12.
Experiments were conducted to investigate forced convective cooling performance of a copper microchannel heat sink with Al2O3/water nanofluid as the coolant. The microchannel heat sink fabricated consists of 25 parallel rectangular microchannels of length 50 mm with a cross-sectional area of 283 μm in width by 800 μm in height for each microchannel. Hydraulic and thermal performances of the nanofluid-cooled microchannel heat sink have been assessed from the results obtained for the friction factor, the pumping power, the averaged heat transfer coefficient, the thermal resistance, and the maximum wall temperature, with the Reynolds number ranging from 226 to 1676. Results show that the nanofluid-cooled heat sink outperforms the water-cooled one, having significantly higher average heat transfer coefficient and thereby markedly lower thermal resistance and wall temperature at high pumping power, in particular. Despite the marked increase in dynamic viscosity due to dispersing the alumina nanoparticles in water, the friction factor for the nanofluid-cooled heat sink was found slightly increased only.  相似文献   

13.
The present study developed a maximum-power point tracking control (MPPT) technology for solar heating system to minimize the pumping power consumption at an optimal heat collection. The net solar energy gain Qnet (=Qs ? Wp/ηe) was experimentally found to be the cost function for MPPT with maximum point. The feedback tracking control system was developed to track the optimal Qnet (denoted Qmax). A tracking filter which was derived from the thermal analytical model of the solar heating system was used to determine the instantaneous tracking target Qmax(t). The system transfer-function model of solar heating system was also derived experimentally using a step response test and used in the design of tracking feedback control system. The PI controller was designed for a tracking target Qmax(t) with a quadratic time function. The MPPT control system was implemented using a microprocessor-based controller and the test results show good tracking performance with small tracking errors. It is seen that the average mass flow rate for the specific test periods in five different days is between 18.1 and 22.9 kg/min with average pumping power between 77 and 140 W, which is greatly reduced as compared to the standard flow rate at 31 kg/min and pumping power 450 W which is based on the flow rate 0.02 kg/s m2 defined in the ANSI/ASHRAE 93-1986 Standard and the total collector area 25.9 m2. The average net solar heat collected Qnet is between 8.62 and 14.1 kW depending on weather condition. The MPPT control of solar heating system has been verified to be able to minimize the pumping energy consumption with optimal solar heat collection.  相似文献   

14.
《Biomass & bioenergy》2007,31(8):593-598
This work is focused on the influence of dilution rate (0.08⩽D⩽0.32 d−1) on the kinetics of continuous cultivation of Spirulina platensis at two different concentrations of ammonium chloride (N0=1.0 and 10 mM) as nitrogen source. Cell productivity increased in both series of runs up to D≅0.12–0.16 d−1, and then decreased. While at N0=1.0 mM biomass washing was certainly the cause of progressive cell concentration decrease, a combination of this phenomenon with the toxic effect of excess ammonia was responsible, at N0=10 mM and D⩾0.20 d−1, for quick stop of cell growth just beyond the achievement of maximum cell productivity (92.4 mg l−1 d−1). Similar profile was observed for protein productivity, that achieved a maximum value of 67.0 mg l−1 d−1, because of the very high protein content (72.5%) of biomass produced under these conditions. The yield of nitrogen-to-biomass was much higher at the lower N0, because of the low protein content, and reached a maximum value of 9.7 g g−1 at D=0.08–0.12 d−1. The yield of nitrogen-to-protein showed less marked difference, being most of the nitrogen present in the cell as proteins or free amino-acids.  相似文献   

15.
The characteristics of transient double-diffusive convection in a vertical cylinder are numerically simulated using a finite element method. Initially the fluid in the cavity is at uniform temperature and solute concentration, then constant temperature and solute concentration, which are lower than their initial values, are imposed along the sidewall and bottom wall, respectively. The time evolution of the double-diffusive convection is investigated for specific parameters, which are the Prandtl number, Pr = 7, the Lewis number, Le = 5, the thermal Grashof number, GrT = 107, and the aspect ratio, A = 2, of the enclosure. The objective of the work is to identify the effect of the buoyancy ratio (the ratio of solutal Grashof to thermal Grashof numbers: N = GrS/GrT) on the evolution of the flow field, temperature and solute field in the cavity. It is found that initially the fluid near the bottom wall is squeezed by the cold flow from the sidewall, a crest of the solute field forms and then pushed to the symmetry line. In the case of N > 0, a domain with higher temperature and weak flow (dead region) forms on the bottom wall near the symmetry line, and the area of dead region increases when N varies from 0.5 to 1.5. More crests of the solute field are formed and the flow near the bottom wall fluctuates continuously for N < 0. The frequency of the fluctuation increases when N varies from −0.5 to −1.5. Corresponding to the variety of the thermal and solutal boundary layers, the average rates of heat transfer (Nu) at the sidewall remain almost unchanged while the average rates of mass transfer (Sh) at the bottom wall change much in the cases of N = 1, 0, −1.  相似文献   

16.
This study examined new innovative design of aluminum rectangular and triangular double-layered microchannel heat sink (RDLMCHS) and (TDLMCHS), respectively, using Al2O3–H2O and SiO2–H2O nanofluids. A series of experimental runs for different channel dimensions, different nanoparticles concentrations and types and several pumping powers showed excellent hydrothermal performance for DLMCHS over traditional single-layer (SLMCHS). The results showed that the sequential TDLMCHS provided a 27.4% reduction in the wall temperature comparing with RDLMCHS and has better temperature uniformity across the channel length with less than 2 °C. Sequential TDLMCHS provided 16.6% total thermal resistance lesser than the RDLMCHS at low pumping power and the given geometry parameters. Pressure drop observation showed no significant differences between the two designs. In addition, larger number of channels and smaller fin thickness referred less thermal resistance rather than only increasing the pumping power. Higher nanoparticle concentration showed better thermal stability for both nanofluids than pure water. The Al2O3–H2O nanofluid (0.9 vol.%) showed best performance with the temperature difference of 1.6 °C and lowest thermal resistance of 0.13 °C/W·m2.  相似文献   

17.
This work experimentally investigated the fluid flow and heat transfer behaviors of jet impingement onto the rotating heat sink. Air was used as impinging coolant, while the square heat sinks with uniformly in-line arranged 5 × 5 and 9 × 9 pin-fins were employed. The side length (L) of the heat sink equaled 60 mm and was fixed. Variable parameters were the relative length of the heat sink (L/d = 2.222 and 4.615), the relative distance of nozzle-to-fin tip (C/d = 0–11), the jet Reynolds number (Re = 5019–25,096) and the rotational Reynolds number (Rer = 0–8114). Both flow characteristics of stationary and rotating systems were illustrated by the smoke visualization. Besides, the results of heat transfer indicate that, for a stationary system with a given air flow rate, there was a larger average Nusselt number (Nu0) for the 9 × 9 pin-fin heat sink with L/d = 4.615 and C/d = 11. For a rotating system, a bigger Rer meant a more obvious heat transfer enhancement (NuΩ/Nu0) in the case of smaller Re, but NuΩ/Nu0 decreased with increasing Re. In this work, NuΩ/Nu0 in L/d = 2.222 is higher than in L/d = 4.615; among the systems in L/d = 2.222, bigger NuΩ/Nu0 exists in the case of C/d = 9–11, but among the systems in L/d = 4.615, bigger NuΩ/Nu0 exists in the case of C/d = 1–3. Finally, according to the base of NuΩ/Nu0 ? 1.1, the criterion of the substantial rotation was suggested to be Rer/Re ? 1.154.  相似文献   

18.
An experimental investigation has been conducted to clarify forced convection heat transfer characteristic and flow behavior of an isothermal cam shaped tube in cross flow. The range of angle of attack and Reynolds number based on an equivalent circular tube are within 0° < α < 180° and 1.5 × 104 < Reeq < 2.7 × 104, respectively.The results show that the mean heat transfer coefficient is a maximum at about α = 90° over the whole range of the Reynolds numbers. It is found that thermal hydraulic performance of the cam shaped tube is larger than that of a circular tube with the same surface area except for α = 90° and 120°. Furthermore, the effect of the diameter of the cam shaped tube upon the thermal hydraulic performance is discussed.  相似文献   

19.
The numerical modeling of the conjugate heat transfer and fluid flow of Al2O3/water nanofluid through the microchannel heat sink is presented in the paper. The laminar flow regime was considered along with viscous dissipation effect. The microchannel heat sink with square microchannels and Dh = 50 μm is considered. The heat flux was fixed to q = 35 W/m2 with heating and cooling cases. The water based Al2O3 nanofluid was encountered with various volume concentrations of Al2O3 particles ?=19% and three diameters of the particle dp = 13, 28 and 47 nm. The analysis is performed on the results obtained for the local heat transfer coefficients based on a fixed pumping power. The results reveal a different local heat transfer behavior compared to the analysis made on a basis of the constant Re.  相似文献   

20.
Thermal management of heat generating electronics using the Bi-Disperse Porous Medium (BDPM) approach is investigated. The BDPM channel comprises heat generating micro-porous square blocks separated by macro-pore gaps. Laminar forced convection cooling fluid of Pr = 0.7 saturates both the micro- and macro-pores. Bi-dispersion effect is induced by varying the porous block permeability DaI and external permeability DaE through variation in number of blocks N2. For fixed Re, when 10?5 ? DaI ? 10?2, the heat transfer Nu is enhanced four times (from ~200 to ~800) while the pressure drop Δp1 reduces almost eightfold. For DaI < 10?5, Nu decreases quickly to reach a minimum at the Mono-Disperse Porous Medium (MDPM) limit (DaI  0). Compared to N2 = 1 case, Nu for BDPM configuration is high when N2 ? 1, i.e., the micro-porous blocks are many and well distributed. The pumping power increase is very small for the entire range of N2. Distributing heat generating electronics using the BDPM approach is shown to provide a viable method of thermo-hydraulic performance enhancement χ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号