首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
裂解升温速率对C/C—SiC复合材料性能的影响研究   总被引:1,自引:0,他引:1  
以聚碳硅烷(PCS)为先驱体,采用先驱体浸渍裂解(PIP)工艺制备了C/C-SiC复合材料,研究了先驱体转化过程中不同裂解升温速率对材料力学和抗氧化性能的影响。结果表明:以较低的裂解升温速率制备的C/C-SiC复合材料的力学和抗氧化性能较好。采用20℃/h裂解升温速率制得的C/C-SiC复合材料的弯曲强度达278 MPa,在1400℃氧化2 h后,失重率为3.1%。  相似文献   

2.
以聚碳硅烷和硼化锆前驱体为原料,采用前驱体浸渍裂解工艺制备Cf/SiC-ZrB2复合材料,首先研究了粘度对前驱体溶液浸渍效率和材料致密度的影响,进而研究了浸渍压力等条件对材料性能的影响。结果表明:合理的溶液组分配比关系到混合溶液的粘度,是影响浸渍性能的主要因素;真空加压浸渍的方法可以减少制备周期,快速提高材料致密度,对材料的各方面性能都有明显的改善。  相似文献   

3.
先驱体转化法制备C/C-SiC复合材料研究   总被引:1,自引:0,他引:1  
以多孔C/C复合材料为预制型,聚碳硅烷(PCS)为先驱体,制备了C/C-SiC复合材料。研究了浸渍液浓度和不同C/C复合材料预制体密度等级对C/C-SiC复合材料的密度和力学性能的影响。结果表明:当浸渍液浓度为50%时,复合材料的密度均达到最佳值;不同的预制体密度对制得的复合材料性能有很大的影响,其中初始密度为1.2g/cm3试样制得的复合材料性能达到最优,其密度达到1.786g/cm3,弯曲强度达204.1MPa,剪切强度为16.1MPa,断裂韧性为6.83MPa·m1/2。  相似文献   

4.
方晖  郑文伟  陈朝辉 《陶瓷学报》2002,23(3):174-177
以聚碳硅烷为先驱体 ,采用先驱体转化法制备三维编织Cf SiC复合材料。研究发现 ,第一次裂解时采用热压辅助可以明显提高材料的致密度和力学性能。第一次在 160 0℃、10MP的条件下热压裂解 60min ,后续真空浸渍—常压裂解处理五个周期所制得的材料具有较高的力学性能 ,其弯曲强度和断裂韧性分别为 5 64MPa、16MPa·m1 2 。讨论了制备工艺对材料结构和性能的影响  相似文献   

5.
采用化学气相渗积工艺制备出密度分别为0.81,1.10,1.26,1.52 g/cm3的C/C复合材料坯体,再以聚碳硅烷(PCS)为先驱体,通过先驱体转化法制备出密度相近的C/C-SiC复合材料,并对它们的弯曲强度和抗氧化性能作了对比分析。结果表明:由密度为0.81 g/cm3的C/C复合材料坯体制得的C/C-SiC复合材料具有最高的弯曲强度,达265 MPa,具有最好的抗氧化性能,在1 000℃氧化2 h后失重率为2.61%。  相似文献   

6.
以全氢聚硅氮烷(PHPS)为先驱体,采用聚合物浸渍裂解工艺制备BN纤维织物增强陶瓷透波材料,研究了复合材料的致密化工艺和力学性能。结果表明:先驱体PHPS在1637℃裂解产物主晶相为α-Si3N4。以PIP工艺制备BNf/Si3N4复合材料,经过4个浸渍裂解周期密度达到1·5g/cm3,复合材料的室温弯曲强度达到39·6MPa。裂解过程中,PHPS与BN纤维发生了强界面反应,导致复合材料力学性能不高。  相似文献   

7.
选用聚碳硅烷(PCS)为前驱体,分别将3D编织和2.5D编织的C/C复合材料,由初始密度1.32 g/cm3制备成密度为1.70g/cm3的C/C-SiC复合材料,测试了它们的弯曲强度和抗氧化性能,并分析了微观结构。实验表明:3D编织的C/C-SiC复合材料具有更高的平均弯曲强度,达到226.1 MPa;两种C/C-SiC复合材料均具有相当优异的抗氧化性,1 000℃下,2 h最大氧化失重率不到5%,但2.5D编织的C/C-SiC复合材料抗氧化性能更优异。  相似文献   

8.
以纳米SiC粉为惰性填料,采用先驱体浸渍裂解法制备C/C-SiC复合材料,研究了C/C预制体密度对复合材料致密性和弯曲性能的影响。结果表明,纳米SiC粉的添加能有效抑制先驱体裂解过程中的体积收缩,提高致密度。C/C预制体密度对制得的复合材料性能有很大的影响,其中用密度为1.24 g/cm3的C/C预制体制得的复合材料试样性能最优,其最终密度为1.80g/cm3,开孔率为7.32%,弯曲强度达220 MPa。  相似文献   

9.
用先驱体浸渗裂解法制备了碳纤维增强碳(carbon fiber reinforced carbon,C/C)-SiC复合材料,用H2-D2火焰法检测其烧蚀性能.结果表明:C/C-SiC复合材料的烧蚀率随复合材料中的Si含量的增加而呈下降趋势;经过5次浸渍,C/C-SiC复合材料的密度从1.46 g/cm3增加到1.75 g/cm3,Si含量从5.06%增加到13.8%,线烧蚀率和质量烧蚀率分别下降474%和34.5%.密度为1.75g/cm3的C/C-SiC复合材料,其线烧蚀率和质量烧蚀率分别为2.22 μm/s和1.289 mg/s,其线烧蚀率和质量烧蚀率分别为密度1.78 g/cm3的C/C复合材料的21.7%和78.6%.基体中SiC的引入明显提高了C/C复合材料的抗氧化烧蚀性能.  相似文献   

10.
以三维四向编织方式的碳化硅纤维预制体为增强相,选用聚碳硅烷为先驱体浸渍剂,采用聚合物先驱体浸渍裂解工艺制备了SiC纤维增强SiC陶瓷基(SiC/SiC)复合材料,进而采用自主设计研制的陶瓷基复合材料高温面内剪切测试夹具对SiC/SiC复合材料进行高温面内剪切强度测试,分析研究了试样形状尺寸、加载速率、夹具材料等对SiC/SiC复合材料高温面内剪切强度测试结果的影响,并分析了夹具材料、测试环境等对测试夹具寿命的影响,最终优化确认出一套较优的针对SiC/SiC复合材料的高温面内剪切强度测试方法。  相似文献   

11.
以炭毡作为纤维增强体,采用化学气相渗透工艺研制出低密度C/C复合材料,进而以低密度炭/炭复合材料为预制体,采用聚碳硅烷和有机锆前驱体作为复相陶瓷前驱体,采用先驱体浸渍裂解工艺成功制备出ZrC/SiC多组元改性C/C复合材料试样。借助万能电子试验机和扫描电镜进行材料的力学性能和微观结构分析。结果表明:包含ZrC颗粒的SiC相双组元弥散分布在C/C复合材料基体中,且随着前驱体中有机锆含量的增加,力学性能出现先升后降的趋势,当有机锆前驱体质量分数为25%时,改性C/C复合材料弯曲强度和弯曲模量较优,分别为241 MPa和17.25 GPa。。  相似文献   

12.
C/C多孔体对C/C-SiC复合材料微观结构和弯曲性能的影响   总被引:2,自引:0,他引:2  
以4种纤维含量相同(32%,体积分数,下同),用化学气相渗透(chemical vapor infiltration,CVI)法制备了4种密度的碳纤维增强碳(carbon fiber reinforced carbon,C/C)多孔体,基体炭含量约20%~50%.利用液相渗硅法(liquid silicon infiltration,LSI)制备了C/C-SiC复合材料,研究了C/C多孔体对所制备的C/C-SiC复合材料微观结构和弯曲性能的影响.结果表明:不同密度的C/C多孔体反应渗硅后,复合材料的物相组成均为SiC,C及单质Si;随着C/C多孔体中基体炭含量的增加,C/C-SiC复合材料中SiC含量逐渐减少而热解炭含量逐渐增加.C/C-SiC复合材料弯曲强度随着材料中残留热解炭含量增加而逐渐增加,热解炭含量为约42%的C/C多孔体所制备的C/C-SiC复合材料的弯曲强度最大,达到320 MPa.  相似文献   

13.
采用新型浆料注射/真空浸渍工艺实现了超高温陶瓷组分与碳纤维的有效复合,并结合低温(1 450℃)热压烧结实现了Cf/ZrB2-SiC复合材料的制备。研究了不同SiC源(SiC粉体和聚碳硅烷PCS)对复合材料微结构和力学性能的影响,结果表明:基于聚碳硅烷优异的流动性实现了陶瓷组分在纤维束内和束间的有效填充,并经低温热压烧结后Cf/ZrB2-PCS复合材料的相对密度为91.3%,主要归结于聚碳硅烷裂解后残留的微量无定性碳起到了表面除氧的作用而促进致密化,但该无定性碳弱化了晶界强度而导致力学性能降低。同时Cf/ZrB2-PCS复合材料表现出非脆性断裂模式且断裂功高达539 J/m^2,较Cf/ZrB2-SiCp复合材料提升高达84.6%;该复合材料断裂功的提升主要归结于裂纹偏转、裂纹分叉和纤维桥联等多种增韧机制的协同效应,大幅度改善了ZrB2基超高温陶瓷材料的损伤容限和可靠性。  相似文献   

14.
通过在有机前驱体溶液中加入惰性填料ZrB_2和SiC微粉,制备了C_f/SiC-ZrB_2复合材料。分别研究了三组不同含量的料浆对复合材料浸渍裂解效果的影响,并借助扫描电镜(SEM)和能谱分析(EDS)对制备的Cf/SiC-ZrB2复合材料的微观结构和元素组成进行了分析。研究表明:在有机前驱体溶液中添加无机粉体浸渍复合材料能够起到缩短制备周期、提高材料强度的目的。当加入惰性填料的质量分数为15%时,能够在8个制备周期内将复合材料的密度快速提升到2.0g?cm~(-3),而且制备的材料内部结构致密,力学性能优异。  相似文献   

15.
为提高C/C复合材料的高温抗氧化性能,以聚碳硅烷(PCS)浸渍裂解法和Si,Mo,W粉浆料刷涂反应法在C/C复合材料表面制备SiC-MoSi2-WSi2复合涂层,借助X射线衍射仪、扫描电镜等分析手段,对涂层的微观形貌、组织结构及物相进行分析研究,优化涂层制备工艺,考察了涂层的高温抗氧化性能,分析了抗氧化机理.制备的SiC-MoSi2-WSi2复合涂层厚度200 μm左右,主要由SiC,MoSi2,WSi2构成.1500℃氧化试验结果表明复合涂层的静态氧化失重率较SiC单层涂层降低50%以上,较大地改善了C/C复合材料的抗氧化性能.  相似文献   

16.
以丙烯(C3H6),三氯甲基硅烷(MTS)为原料,利用化学气相渗透(CVI)技术在炭纤维预制体的纤维表面依次制备了热解炭(PyC)与碳化硅(SiC)界面层,随后结合CVI及前驱体浸渍裂解(PIP)工艺对材料进行增密,制得了密度为1.92 g/cm3的界面改性C/C-SiC-ZrC复合材料.利用X射线衍射仪(XRD)与扫...  相似文献   

17.
研究了温度和各成分的质量比对聚碳硅烷/二乙烯基苯和聚碳硅烷/二乙烯基苯/二甲苯先驱体溶液黏度的影响,以及质量比对其二者先驱体交联率和陶瓷产率的影响。结果表明:聚碳硅烷/二乙烯基苯先驱体的溶液黏度随温度的升高而降低;提高二乙烯基苯的含量,可以降低先驱体的溶液黏度,改善流动性,但是会降低先驱体的交联率和陶瓷产率。聚碳硅烷/二乙烯基苯/二甲苯先驱体的溶液黏度随温度升高而逐渐降低;增加二甲苯的质量比,先驱体溶液的黏度明显降低,流动性增加;且在40~60℃范围内,当聚碳硅烷/二乙烯基苯/二甲苯质量比为10:3:2时,先驱体的溶液黏度在170~410mPa·s之间,具有良好的流动性、长时间稳定性以及较高的交联率和陶瓷产率,适宜作为碳纤维预制体的浸渍液。  相似文献   

18.
分别以PAN基预氧丝和炭纤维为原材料,采用准三维针刺工艺制备2种纤维预制体,然后采用化学气相渗积(CVI)工艺制备出密度相近的C/C复合材料坯体,最后对坯体进行熔融渗硅处理得到C/C-SiC复合材料,研究了纤维种类对C/C-SiC复合材料力学性能和断裂机理的影响。结果表明:纤维种类对C/C-SiC复合材料的力学性能和断裂机理有显著影响,炭纤维增强C/C-SiC复合材料的弯曲强度较高,达到140.3 MPa,断裂失效模式为"假塑性"断裂;预氧丝C/C-SiC复合材料的弯曲强度较低,为112.6 MPa,呈脆性断裂。产生以上结果的主要原因是增强纤维的力学性能不同,纤维表面形貌不同,进而导致所制备的C/C-SiC复合材料增强纤维与基体的结合强度不同。  相似文献   

19.
分别采用聚碳硅烷(polycarbosilane,PCS)/二甲苯(xylene)溶液和SiC/PCS/xylene浆料浸渍-裂解(precursor impregnation and pyrolysis,PIP)法制备高密度再结晶碳化硅(recrystallized SiC,RSiC)。测量了RSiC的体积密度和抗弯强度。用扫描电镜观察了RSiC样品的显微结构。结果表明:采用PCS/xylene溶液浸渍的裂解产物均匀分布在RSiC的孔隙中,经6次PIP循环后,RSiC的密度从2.74g/cm3提高到约2.90g/cm3,抗弯强度与初始样品相比提高了28.1%。采用SiC/PCS/xylene浆料浸渍后的产物在基体中呈梯度分布,基体表层孔隙填充致密,有利于提高RSiC的抗氧化能力。仅3次PIP循环后,RSiC的密度就可达2.90g/cm3,抗弯强度也可提高37.0%。  相似文献   

20.
本文采用化学气相渗透(CVI)工艺制备了2D针刺预制体增强的C/C-SiC复合材料,并对材料密度、力学性能以及强粒子冲蚀下的烧蚀机理和破坏机制进行了分析。结果表明,C/C-SiC复合材料在强粒子冲蚀下的破坏机制主要为机械冲蚀和颗粒侵蚀,其次是冲蚀过程中伴随的少量氧化。材料内层间孔、束间孔以及针刺孔的存在加剧了C/C-SiC复合材料破坏。研究发现,通过改变预制体结构来实现材料力学性能的均衡,并提高材料密度以减少材料的孔隙率将成为该使用环境下的材料设计原则  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号