首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
提出了溶胶-凝胶孔道构建-反应熔渗制备新方法,首先通过溶胶凝胶方法在纤维预制体中引入B4C-C多孔体,获得Cf/B4C-C多孔预成型体结构;在此基础上,结合反应熔渗Si-Zr合金,获得Cf/ZrB2-ZrC-SiC超高温陶瓷基复合材料。研究了Cf/B4C-C多孔预成型体结构对RMI过程和材料性能的影响,并揭示了孔隙结构对基体分布和界面损伤及复合材料性能的影响规律。结果表明:通过灵活调控Cf/B4C-C孔隙结构可实现复合材料中ZrB2-ZrC-SiC基体分布改善和(PyC-SiC)2界面损伤缓解,大幅提升材料性能。当预成型体孔隙结构为25.9%和58.0μm时,制备的Cf/ZrB2-ZrC-SiC复合材料基体可均匀分布于纤维束间和束内,同时纤维能得到良好的保护,材料表现出最优的力学性能(抗弯强度231 MPa)。  相似文献   

2.
提出了溶胶–凝胶孔道构建–反应熔渗制备新方法,首先通过溶胶凝胶方法在纤维预制体中引入B_4C–C多孔体,获得C_f/B_4C–C多孔预成型体结构;在此基础上,结合反应熔渗Si–Zr合金,获得C_f/ZrB_2–ZrC–SiC超高温陶瓷基复合材料。研究了C_f/B_4C–C多孔预成型体结构对RMI过程和材料性能的影响,并揭示了孔隙结构对基体分布和界面损伤及复合材料性能的影响规律。结果表明:通过灵活调控C_f/B_4C–C孔隙结构可实现复合材料中ZrB_2–ZrC–SiC基体分布改善和(PyC–SiC)_2界面损伤缓解,大幅提升材料性能。当预成型体孔隙结构为25.9%和58.0μm时,制备的C_f/ZrB_2–ZrC–SiC复合材料基体可均匀分布于纤维束间和束内,同时纤维能得到良好的保护,材料表现出最优的力学性能(抗弯强度231 MPa)。  相似文献   

3.
以SiC晶须作为增强体,通过酚醛树脂高温碳化裂解获得碳包覆的SiC晶须,与纳米碳化硅粉体、炭黑混合均匀形成复合陶瓷乙醇浆料.经过干燥、造粒、成型和排胶后获得SiCw-C-SiC素坯,利用反应熔渗法制备高体积分数的SiC晶须增强SiC陶瓷基复合材料.研究了碳黑含量对复合材料力学性能与显微结构的影响.通过扫描电镜照片显示,碳包覆的SiC晶须经高温反应熔渗后仍保持表面的竹节状形貌,且晶须与碳化硅基体间形成适中的界面结合强度,材料断口处有明显的晶须拔出;当炭黑含量为15wt%时,抗弯强度和断裂韧性达到最高值分别为315 MPa和4.85 MPa·m1/2,比未加晶须的SiC陶瓷抗弯强度提高了25%,断裂韧性提高了15%;当炭黑含量为20wt%时,复合材料中残留部分未反应的炭黑,制约其力学性能的提高.  相似文献   

4.
《陶瓷》2016,(11)
综述了陶瓷基复合材料的研究现状、基体和增强增韧纤维的选择;对陶瓷基复合材料的界面、增韧技术及其制造工艺,尤其是对化学气相浸渗(CVI)工艺做出了较为全面的总结和介绍。最后对陶瓷基复合材料应用前景进行了展望。  相似文献   

5.
SiCp/Al复合材料的自发熔渗机理   总被引:1,自引:0,他引:1  
以Mg为助渗剂,采用液态铝自发熔渗经氧化处理的SiC粉体压坯的方法,制备出高增强体含量的SiCp/Al复合材料.通过考察铝液在SiC粉体压坯中的渗入高度与温度、时间的关系来研究铝液的熔渗机理,并对SiCp/Al复合材料进行X射线衍射、能量散射谱和金相分析.结果表明:在熔渗前沿发生的液-固界面化学反应促进两相润湿,毛细管力导致铝液自发渗入到SiC多孔陶瓷中;熔渗高度与时间呈抛物线关系.熔渗激活能为166 kJ/mol,这表明渗透过程受界面反应控制.经氧化处理的SiC粉体均匀地分布在金属基体中,其轮廓清晰.在SiCp/Al复合材料中未发现Al4C3的存在.  相似文献   

6.
为提高C/C复合材料在2000℃以上有氧环境中的抗氧化烧蚀性能,本研究采用ZrB2浆料浸渍、ZrC-SiC前驱体浸渍裂解与Si-Zr10共晶合金反应熔渗复合工艺制备了C/C-SiC-ZrB2-ZrC复合材料,细致研究了复合材料在熔渗过程中的基体微观结构演变机理及其力学性能和抗烧蚀性能。结果表明,在反应熔渗结束后的降温阶段,部分ZrC陶瓷与残余Si熔体通过原位固-液反应转化为ZrSi2和SiC,生成的亚微米级SiC颗粒均匀镶嵌于ZrC-ZrSi2二元混合物中,最终形成ZrC-ZrSi2-SiC三相混合微区。制备的C/C-SiC-ZrB2-ZrC复合材料密度为3.18 g/cm3,开孔率为2.77%,其弯曲强度和弯曲模量分别为121.46±13.77 MPa和21.78±5.56 GPa。在其断口处能观察到较长且较多的单丝纤维拔出以及明显的界面脱黏,这表明复合材料的失效方式为韧性断裂。经2000℃,300 s的大气等离子体烧蚀,复合材料表...  相似文献   

7.
对T300碳纤维在真空环境下,在600、900、1200、1500℃进行热处理,用液硅熔渗反应法(liquid silicon infiltration,LSI)制备了不同微观组织结构的C/C-SiC复合材料。采用光电子能谱分析了热处理对纤维表面结构的影响,用光学显微镜和扫描电子显微镜对材料微观形貌进行了观察分析。采用双槽口剪切法(DNS)测试了C/C-SiC复合材料层间剪切强度(interlaminar shear strengh,ILSS),并分析了纤维热处理对材料剪切性能影响的微观机理。结果表明:碳纤维经热处理后,表面化学成分发生变化,氧含量显著降低,改变了碳纤维增强树脂基复合材料(carbon fiber reinforced resin matrix composite,CFRP)先驱体中纤维/树脂界面结合强度,从而在CFRP裂解后形成了具有不同微观结构的C/C预制体,通过液Si对不同微结构的C/C预制体进行熔渗,获得具有不同微观结构的 C/C-SiC复合材料;DNS 测试发现碳纤维热处理能够有效改善 C/C-SiC复合材料的层间剪切强度,主要是由于纤维经热处理后制备的C/C-SiC复合材料中,SiC基体相分布较均匀并包裹在碳纤维周围,导致纤维/基体界面结合强度高。经1500℃热处理纤维增强的C/C-SiC复合材料,其剪切强度为34 MPa,与未处理的相比,ILSS提高了33%。  相似文献   

8.
采用Zr-Si合金在较低温度下熔渗制备了不同密度的C/C-ZrC复合材料,研究了不同密度C/C多孔体的熔渗行为以及不同密度复合材料的相组成和微观形貌,并且在1 500℃下对其静态氧化行为进行了研究。结果表明:中等密度多孔体熔渗较为理想,气孔率仅为4.78%。随着原材料密度的增加,C/C-ZrC复合材料密度增量相应下降。物相分析显示,C/C-ZrC复合材料由C,ZrC,Zr和Zr_2Si组成,未发现SiC相的存在。微观结构解析表明,反应生成的ZrC陶瓷相主要集中在网胎层,合金除与C基体反应生成ZrC层外,在熔体内部也有部分ZrC析出。论文从界面反应以及元素扩散的角度探讨了熔渗机理。C/C-ZrC复合材料在1 500℃静态氧化后的产物主要包括单斜相ZrO_2和非晶态SiO_2,未能形成致密氧化膜,改性后的样品失重率随着熔渗增重增大而减小。  相似文献   

9.
为揭示平纹Cf/SiC复合材料的拉伸损伤演化及失效机理,开展了X射线CT原位拉伸试验,获得材料的三维重构图像,利用深度学习的图像分割方法,准确识别出拉伸裂纹并实现其三维可视化。分析了平纹Cf/SiC复合材料损伤演化与失效机理,基于裂纹的三维可视化结果对材料损伤进行了定量表征。结果表明:平纹Cf/SiC复合材料的拉伸力学行为呈现非线性,拉伸过程中主要出现基体开裂、界面脱黏、纤维断裂及纤维拔出等损伤;初始缺陷易引起材料损伤,孔隙多的部位裂纹数量也多;纤维束外基体裂纹可扩展至纤维束内部,并发生裂纹偏转。基于深度学习的智能图像分割方法为定量评估陶瓷基复合材料损伤演化与失效机理提供了有效分析手段。  相似文献   

10.
纤维增强SiC陶瓷基复合材料由纤维、界面层和SiC基体组成。界面层可以传递载荷和偏转裂纹,同时防止纤维受到材料制备和使用过程中的化学侵蚀,对于调节SiC陶瓷基复合材料的各项性能具有非常重要的作用。本文在叙述界面层功能的基础上,讨论了界面层对陶瓷基复合材料的力学、耐高温及抗氧化性能的影响,并分析了研究中存在的问题,指出了未来研究的方向和重点。  相似文献   

11.
严春雷  袁蓓  查柏林 《硅酸盐通报》2017,36(11):3703-3707
超高温陶瓷材料以其优异的综合性能有望成为新一代高温热防护材料.目前超高温陶瓷材料主要分为烧结超高温陶瓷材料和连续纤维增强超高温陶瓷基复合材料,将对烧结超高温陶瓷材料的研究进展做重点介绍,随后简要介绍连续纤维增强超高温陶瓷基复合材料的优势和研究概况.  相似文献   

12.
陶瓷基复合材料以其优异的耐高温、热稳定性好、耐磨损等性能,在高技术领域和航空航天领域有重要应用。界面在纤维和陶瓷基体之间起着决定性的作用,复合材料的界面相是纤维与基体连接的纽带,也是应力及其它信息传递的桥梁。本文分别从不同复合方式复合材料的界面研究、纤维增强基体的增韧机制和界面的力学性能等方面进行了综述。  相似文献   

13.
纤维增强陶瓷基复合材料界面及增韧机制的进展   总被引:1,自引:0,他引:1  
陶瓷基复合材料以其优异的耐高温、热稳定性好、耐磨损等性能,在高技术领域和航空航天领域有重要应用。界面在纤维和陶瓷基体之间起着决定性的作用,复合材料的界面相是纤维与基体连接的纽带,也是应力及其它信息传递的桥梁。本文分别从不同复合方式、复合材料的界面研究及纤维增强基体的增韧机制和界面的力学性能等方面进行了综述。  相似文献   

14.
介绍了5种主要SiC基体的成型方法,分别是化学气相渗透(CVI)、聚合物先驱体浸渍-裂解法(PIP)、液相硅渗透法(LSI)、反应烧结法、化学气相反应法(CVR)。阐述了各种基体的组织结构、致密效率及陶瓷基复合材料的性能,其中CVI+PIP/LSI的复合成型技术可达到优化的制备过程,提高基体的组织结构和致密化效率;C/C及C/SiC复合材料表面化学气相转换法SiC涂层及多层涂层技术是提高CMC抗氧化性能的有效途径,并已得到工程实际验证。  相似文献   

15.
一种纳米纤维增韧碳纤维树脂基复合材料的制备方法,属于复合材料领域。其特征为采用热塑性工程塑料的纳米纤维毡或膜作为增韧部分。其制备方法是:将碳纤维的预成型体作为静电纺丝的负极接收器,直接将热塑性工程塑料纳米纤维毡或膜纺丝于预成型体上,所纺纳米纤维毡或膜相对于碳纤维预成型体的树脂基体具有质量比例;将含有纳米纤维毡或膜的碳纤维的预成型体铺层,制备含纳米纤维夹芯结构的碳纤维预成型  相似文献   

16.
探讨了增韧环氧树脂977-2与T300碳纤维、增韧环氧树脂M21与T800碳纤维形成的单向带预浸料、织物预浸料以及复合材料层压板的性能。研究结果表明:M21/T800预浸料属于T800级材料,M21/T800复合材料的常规力学性能在纤维控制的项目上,高于其他三种材料;树脂基体及界面的性能与T300材料的相当,材料的韧性和抗损伤能力比T300材料有较大程度的提高;M21/T300织物预浸料的韧性和抗损伤能力优于977-2A/T300预浸料。  相似文献   

17.
采用化学气相渗透工艺在Nextel 720纤维表面制备PyC和PyC/SiC两种涂层,然后以正硅酸乙酯和异丙醇铝作为先驱体,以先驱体浸渗热解法制备三维Nextd 720纤维增韧莫来石陶瓷基复合材料,比较分析了两种涂层复合材料的力学性能和断裂模式。结果表明:具预先涂覆PyC的复合材料中纤维与基体直接接触,发生烧结形成强结合界面,复合材料脆性断裂,三点抗弯强度仅56MPa。PyC/SiC涂层则演化为间隙/SiC复合界面层,SiC成为阻滞纤维与基体接触的阻挡层,间隙保证了纤维拔出,复合材料韧性断裂且三点抗弯强度高达267.2MPa。  相似文献   

18.
发展了一种Hf C改性C/C复合材料的快速低成本合金反应熔渗制备技术,采用反应熔渗铪基合金制备了性能优异的C/C-Hf C复合材料。XRD分析表明C/C-Hf C复合材料由C、Hf C、Zr C和Si C相组成。合金反应熔渗过程中,合金熔体与热解碳反应形成了层状的基体显微组织。采用激光烧蚀法测试了C/C-Hf C复合材料的抗烧蚀性能,烧蚀60 s后C/C-Hf C复合材料的线烧蚀率为0.008 mm/s,明显低于C/C复合材料预制体的线烧蚀率0.024 mm/s。激光烧蚀后复合材料烧蚀表面形成了一层Ta2O5和Hf O2相组成的抗烧蚀层,有效减小了C/C-Hf C复合材料进一步的烧蚀破坏,大大提高了C/C-Hf C复合材料的抗烧蚀性能。  相似文献   

19.
连续纤维增强陶瓷基复合材料界面研究进展   总被引:1,自引:0,他引:1  
在陶瓷基复合材料中引入高强陶瓷纤维的目的是为了增强陶瓷的断裂韧性,纤维与基体的界面是决定CMC韧性的关键因素。国内外许多专家和机构研究重点主要集中于连续纤维增强陶瓷基复合材料的界面,包括纤维与基体的化学相容性和热物理相容性,以及用TEM、HRTEM、SADP、AEM、声学显微法、EDX等微观测试手段研究不同体系的界面形成机理。本文对上述界面研究概况进行了综述,并简述了界面设计原则和近年来计算机技术在界面研究中的应用情况。指出,连续纤维增强陶瓷基复合材料界面研究将一直是复合陶瓷基复合材料界研究的重点和难点。  相似文献   

20.
分别以PAN基预氧丝和炭纤维为原材料,采用准三维针刺工艺制备2种纤维预制体,然后采用化学气相渗积(CVI)工艺制备出密度相近的C/C复合材料坯体,最后对坯体进行熔融渗硅处理得到C/C-SiC复合材料,研究了纤维种类对C/C-SiC复合材料力学性能和断裂机理的影响。结果表明:纤维种类对C/C-SiC复合材料的力学性能和断裂机理有显著影响,炭纤维增强C/C-SiC复合材料的弯曲强度较高,达到140.3 MPa,断裂失效模式为"假塑性"断裂;预氧丝C/C-SiC复合材料的弯曲强度较低,为112.6 MPa,呈脆性断裂。产生以上结果的主要原因是增强纤维的力学性能不同,纤维表面形貌不同,进而导致所制备的C/C-SiC复合材料增强纤维与基体的结合强度不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号